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Imaging techniques, like X-ray, Magnetic Resonance Image (MRI) and Computer 

Tomography (CT), are common place in medicine nowadays. These instruments make 

it easier for surgeons and doctors to diagnose diseases and increase the ratio of 

success in surgery, as they enable internal human structures to be observed. Computer 

graphics, one of the branches of Computer Science, is commonly used in medical 

disciplines. It reconstructs the 2-dimension image slices obtained by CT or MRI to 

3-dimensionel models, making it easier for surgeons and doctors to observe internal 

organs.  

 

Applications of computer graphics can not only visualize medical data, but also 

quantify and evaluate it specified usages. A joint research project was conducted with 

medical specialists of the Department of Orthopaedic Surgery at the University of 

Hong Kong. A material called bone cement is often used with fracture patients in case 

where traditional medical methods do not provide satisfactory results, especially in 

the case of spinal fractures. Doctors and surgeons are very interested in the 

qualification of bone cement injection, but they must depend on their experience to 

distinguish bone cement from other tissues in 2-dimention CT slices. There is 

therefore a need for the development of a computational method which classifies the 



bone cement automatically. However, the complicated shape and the very similar 

densities of bone cement to parts of other tissues makes such a task very difficult. A 

comparison between the sample before the injection and after the injection of bone 

cement is needed in order to collect the characteristics of the shape of the bone 

cement in the spine.  

 

In this thesis, a series of methods were developed to compare two such samples. Two 

major steps were involved in this procedure: Feature point detection and Point 

alignment. In the first step, groups of feature points were detected in both volume data 

sets by a statistical method which differs from the traditional feature point detection 

method. The second step aimed at aligning two point sets in 3-dimensionel space 

approximately. A method requiring only a few points among the point sets to be 

matched was designed to save as much running time as possible without significant 

loss of accuracy. Finally, two volume data sets were aligned by the matrix obtained by 

the second step before the comparison. Thus enables the shape of the bone cement to 

be easily classified by comparing the volumes voxel by voxel. The result can be more 

easily evaluated by the surgeons.  
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Chapter 1 
 

Introduction 
 
 
Computer technology has continuously changed our lives. It is very hard to imagine 
what the world could be without computers nowadays. These amazing machines 
brought to us unbelievable processing powers. The possibility of its applications is 
explored in every aspect. Computer graphics, which is full of gimmicky geometrical 
theories, is one of the branches of Computer Science. Computer graphics deals with 
the problems related to graphics. It reconstructs the real world on the screen and helps 
us do something that is unable to do in the real world. The most common usage of 
computer graphics is computer games, which bring not only funs to the kids but also 
the troubles to their parents as well. However this complicated technology is not only 
limited in entertainment. Another field in which it can be widely used is the medical 
disciplines. Life was much easier when medical imaging came into place. Imaging 
techniques like X-ray, Magnetic Resonance Imaging (MRI) and Computer 
Tomography (CT) are widely used in these days. However, the 2D static images 
created by these techniques are not satisfactory enough. Ambitious scientists, 
researchers and doctors decided to go one step further. They tried to reconstruct these 
2D images into 3D images. It is not an easy task. They have done it and have reason 
to do so. By looking at the 3D images, doctors now can check the magnificent 
structure inside the human body without cutting it off. Just as what a doctor has said 
in the National Geographic program, “If I can see it, I can fix it.” 
 
3-dimensional image will be helpful to orthopaedic surgery. Orthopaedic surgery 
involves bone injuries. Surgeons usually use screws to adhere two parts of broken 
bones. This method works in most of cases, but they do sometimes fail. Some of the 
patients, especially the elderlies whose bones are not as strong as young persons’, 
cannot receive such operation. Calcium is lost day after day when human is growing 
up. Elderlies’ bones become looser because they are lack of calcium. Such bones are 
not strong enough to support the screws. Sometimes the screws in such bones may be 
moved by outside forces that make the situation even worse. Other patients’ bones are 
just chapped. Screw insertion will destroy too many normal structures. For these 
people, surgeons must find other ways for the operations. 
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A new method of orthopaedic surgery, called bone cement injection, was developed 
which can adhere and reinforce bone fracture. Bone cement is something like a glue 
which can be injected into the broken bones and pervades into the gaps of the bone. It 
has two functions. One is to pervade into the gaps inside the bone to adhere all parts 
of the broken bones. The other function is to reinforce the loosen bone. Surgeons 
inject bone cement into the bone first and insert screws after it is solidified.  
 
Bone cement has a lot of prescriptions. Different prescriptions of bone cement have 
different characteristics. The fluidity is one of the most important characteristics, 
which determines where the bone cement goes in the bones. Although a lot of tests 
have been done, the surgeons still have no idea where exactly the bone cement will be 
in the bones after injection. By now, surgeons can only use their experience to 
examine the result of injection by studying the 2D slices obtained by computer 
tomography (CT). Each pixel in a CT slice is assigned a value relating to the density 
of the tissue at that pixel location. When looking at these CT slides, surgeons use their 
expertise, and at the same time incorporate also their imagination to stack the 2D 
images into a 3D volume. However, such a visualization technique is not clear 
enough. Bone cement looks like a group of cloud which mixed with other tissue in the 
CT image. Since the density is the only information obtained by CT, the parts for 
bone cement can easily be mixed up with bone cortices, which are the hardest parts in 
the bone and whose densities are very similar to the densities of bone cement. 
Surgeons, especially the students of orthorpaedic surgery, are sometimes unable to 
distinguish the bone cement from bone cortices. 
 
On the other hand, researchers are developing methods to separate different tissues by 
mathematical theory in a volume data set. In order to check the result of their 
methods, the best way is to compare the same sample before bone cement injection 
and after bone cement injection. Currently available methods and software provide 
such comparisons between 2D images. Very few methods have been reported for 3D 
volumes.  
 
The goal of this thesis is to find a series of approaches to compare a pair of volumes 
that are similar to each other. The main problem is not the comparison itself but the 
alignment of the two volumes. The position of the sample scanned before injection is 
not, in general, the same as its position after injection. Alignment must be done before 
the comparison. The limitation of discrete data space increases the difficulty (To be 
discussed in chapter 3). The method introduced here includes 3 steps to reach the 
goal: 

• Feature points detection 
• Matching the two points sets in 3-dimensional space 
• Alignment and Comparing 

The fundamental problems of volume comparison and its solutions are discussed in 
this thesis. Our method aims at reaching the best balance between speed and accuracy. 
In addition, other previous works in alignments of two point sets are also reviewed. 
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The remainder of this thesis is organized as follows. In chapter 2 we shall give a brief 
overview of the background of the research. In chapter 3 the feature point detection 
method in 3D space and its background will be introduced. This is the first step of our 
method. The second step, alignment, will be described in details in chapter 4. The 
comparison is introduced in chapter 5. The thesis is concluded in chapter 6, where 
some possible future developments of the research are discussed. 
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Chapter 2 
 
Background 
 
 
 

2.1 From Surfaces to Volumes 
 
The most commonly used technique in 3D software, like, PC games Quake and Need for 
Speed, is called Surface Modeling. The objects created by surface modeling, like cars and 
monsters in the games, are made up of vertices, edges and faces. They are just 2D surface 
description of the topology or outlook of the 3D objects. They only have a beautiful 
exterior and are totally empty inside the surface. That means the Lamborghini visualized 
on the screen has nothing inside the shell. All the parts that cannot be seen from the 
outside have been ignored, no V12 engine, no gearbox, no suspensions, or even no seats 
in the old version of Need for Speed. Actually, most of the 3D models are 3D surface 
models. It is natural to omit the internal parts. Since they cannot be seen from the outside, 
there is no need for them to be rendered. As a consequence, computational time of 
perspective effects and lighting effects can be saved in order to increase display speed.  
 
All graphics accelerators specialized in graphical display can handle the above mentioned 
geometric primitives, such as vertices, edges and polygons, efficiently. Manufacturers 
keep on improving their graphical hardware to meet the market’s expectations. Nowadays 
graphical accelerators can process and render more than 30 million triangles per second. 
New graphics algorithms have been developed for fast manipulation of surfaces. Surface-
based rending for surface modeling is quite successful and it has made those graphics-
intensive applications possible even on low-end personal computers.  
 
Although surface-based rendering is well-developed and well-supported by hardware, it 
has some limitations. Surface-based rendered images cannot deal with the internal 
structure of an object. This limits its usage in the medical discipline, because the internal 
structures of a human body are the most important thing to be observed in medicine.  
Besides, the medical data sets including internal structures of human body are usually 
organized in volume data sets, which contain information for each location in space. Such 
organization of data set is almost impossible to be visualized using surface-based 
rendering. To get around this difficulty, one must impose some surface-based primitives 
to the data sets. An efficient algorithm is suggested in [1] for defining surfaces passing 
through data points of the same scalar value, which can be rendered efficiently.  
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Another method for visualizing volume data sets is totally different from the surface-
based approach. Geometric primitives like points, lines and polygons are abandoned but 
voxels are used instead. Voxels become the basic elements in the new approach called 
volume-based rendering.  
 
 

2.2 Volume Visualization 
 
Volume visualization is the technique of rendering and manipulating volumetric data sets. 
Medical visualization is one of the major categories among the various applications of 
volume visualization. First let us take a look at the basics for volume rendering before 
going into the details of the volumetric data evaluation.  
 
 
2.2.1 Voxels 
 
In 2D images, the basic element is pixel. A pixel is a unit square and a 2D image is a 
rectangle composed of pixels. A voxel is the basic element in 3D volume data sets 
analogous to a pixel in a 2D image. A voxel is a unit cube in general, and a volume is a 
cuboid composed of voxles. While each pixel can be addressed by an (x,y) couple 
indicating the coordinates of the pixel axes, a voxel is addressed by an (x,y,z) triple 
indicating the coordinates of the voxel axes.  
 
Each voxel in a volume stores either a scalar value, e.g. density of a bone, or a vector 
value, e.g. gravity direction. A volume of scalar values is called a scalar field while that 
of vector values is called a vector field. In this thesis, the word “volume” will be used 
interchangeably with “scalar field” since the volumetric data set we focus on contains 
scalar values, which is bone density only.  
 
A 3D scalar volume containing all the voxels can be considered as embedding a function 

RZf →3: . If the range of f is either 0 or 1, or each voxel of a volume only stores binary 
value, the volume is called a binary volume. Otherwise, it is called a gray-scaled volume.  
 
 
2.2.2 Rendering 
 
Volume rendering is to generate a display of a 2D projected image of the 3D volume 
from a given viewpoint. To reach this goal, a lot of algorithms have been developed over 
the last decades. Basically, these algorithms are separated into two kinds: Direct Volume 
Rendering (DVR) and Indirect Volume Rendering (IVR) [2]. IVR reconstructs a surface 
called the iso-surface and renders such a surface by traditional surface-based approach. 
The Marching Cubes (MC) [1] algorithm is the most famous approach in IVR. In contrast 
to IVR, DVR renders the volume data directly. Voxels are the fundamental elements in 
DVR approaches. The Ray Casting (RC) approach [3-4], the forward projection approach 
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[5-6], the splatting algorithm [7], and the 3D texture mapping based projection technique 
[8] all belong to DVR.  
 
RC approach is most widely used among DVR approaches. RC is so far the only 
approach which enables adjustable sampling in all dimensions, perspective projections, 
and gray-level gradients [2]. Generally, a volume dataset is viewed from a viewpoint 
through a view plane. The RC algorithm casts a ray from the viewpoint through each 
pixel on the view plane into the volume. Within the volume, samples are taken by tri-
linear interpolation from the voxel values of the volume. Each sample is classified using 
transfer functions (see section 2.5) for R (red), G (green), B (blue) and alpha (opacity) 
[2].  
 
A lot of optimized volume-rendering techniques that are based on fundamental rendering 
theories have been developed in recent years. Most of them sacrifice image quality for 
speed. Shear-warp rendering [9] is probably the currently fastest software method for 
volume rendering [10]. This method is based on a factorization of the viewing matrix into 
a 3D shear parallel to the slice of the volume data, a projection to form a distorted 
intermediate image, and a 2D warp to produce the final image. It combines the 
advantages of RC and the 3D texture mapping based projection technique. It achieves 1.1 
Hz (1.1 frames/second) on a single 150MHz R4400 processor for 256*256*225 volume 
with 65 seconds of pre-processing time [11], or 10 Hz(10 frames/second) on a 16 
processor SGI Challenge multiprocessor for 256*256*223 volume [9].  
 
No matter how good or ingenious these algorithms are, they are based on software 
techniques that limit their performances. Some of the algorithms, like shear-warp 
rendering, need pre-processing, which prohibits immediate visual feedback when the 
parameter is changed. Some of the algorithms based on texture rendering need a large 
texture memory or special functions, like estimation of gradients that are required to 
identify surfaces for shading. On the other hand, the volume data itself is obviously large 
because it includes not only the outer shape of the objects but also the information about 
the interior as well. To implement these algorithms, a powerful computer is needed to 
achieve satisfactory performance. For example, VISBONE [12], which is one of the 
volume rendering systems developed at the University of Hong Kong in 1999, system 
requires an SGI Onyx2 workstation equipped with an Infinity Reality2 graphics board, 4 
MIP R10000 CPUs, 512 Mbytes of main memory and 16Mbytes texture memory. This 
monster is as big as a low cabinet and worth HK$1,000,000 in 1998. Such a high price 
cannot be supported by general users. High requirements on hardware devices restrict the 
usage of volume rendering. For these reasons, VolumePro appears. 
 
 
2.2.3 VolumePro 
 
VolumePro is the world’s first single-chip real-time volume rendering system for 
consumer PCs which was developed by Mitsubishi Electronic Lab (see Figure 2.1). The 
first VolumePro PCI card was operational in April 1999, with 128Mbytes of volume 
memory and the vg500 rendering chip. It is based on the Cube-4 volume rendering 
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architecture developed at SUNY Stony Brook [13]. “Cube-4 requires a large number of 
rendering and memory chips, many pins for inter-chip communication, and large one-
chip storage for intermediate results.” [10]. Enhanced Memory Cube-4(EM-Cube) [14] 
was developed to reduce the price of this card. VolumePro supports 8-bit and 12-bit 
scalar volume. It can render 256*256*256 volume data at 30Hz (30 frames/second) 
without any pre-processing. It also implements several novel features, including gradient 
magnitude modulation, supersampling, supervolumes, slicing, and cropping. This system 
includes a software interface called Volume Library Interface (VLI), which collects C++ 
objects and provides the application programming interface to the VolumePro features. 
 
VolumePro implements Ray Casting (RC) [4]. RC offers high image quality and is easy 
to parallelize. To achieve uniform data access, VolumePro uses a ray-casting technique 
with both object-order and image-order data traversal based on the shear-warp 
factorization of the viewing matrix. [15, 16, 9] (see Figure 2.2).  
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Different to the shear-warp implemented by Lacroute and Levoy, VolumePro performs 
tri-linear interpolation to prevent view-dependent artifacts when switching between base 
planes and accommodates supersampling of the volume data [10]. (Supersampling 
improves the quality of the rendered image by sampling the volume data set at a higher 
frequency than the voxel spacing.) Tri-linear interpolation allows a sampled point which 
does not coincide with a voxel to obtain an estimation of the intensity and opacity from 
the voxels surrounding the sample point. It is an extension of the simple linear 
interpolation to the three dimensions. A linear interpolation of values 10 ,vv  at location 

10 , pp  respectively is given by: 

001
01

0 )( vvv
pp
px

vx +−
−
−

=  

 
Figure 2.1 

VolumePro, the world’s first real-time volume rendering chip-set on PC platform. 

 
Figure 2.2 

Shear-warp factorization of the viewing matrix.
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where ],[ 10 ppx∈ . Denote this linear interpolation by )(1,001 xv Λ= . A superscript x, y, 
or z will be used to represent an interpolation along a particular axis direction when 3D 
point locations are involved. 8 voxels that form a cube surrounding a sampled point 

),,( 000 zyx  (see Figure 2.3(a)) are considered to obtain the interpolation voxel value of 
the sampled point. Three passes of linear interpolation will be performed, one for each of 
the three volume axes, x, y, and z. First linear interpolations along the x direction will be 
carried out to produce intermediate voxel values: 

)(),(),(),( 07,66705,44503,22301,001 xvxvxvxv xxxx Λ=Λ=Λ=Λ=  (see Figure 2.3(b)). Then it 
will be followed by two linear interpolations along the y direction: 

)(),( 067,454567023,010123 yvyv yy Λ=Λ=  (see Figure 2.3(c)). The final voxel value of the 

sampled point is got from the interpolation along the z direction: )( 04567,012301234567 zv zΛ=  
(see Figure 2.3(d)). 
 
 

2.3 Medical Data 
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Tri-linear interpolation 
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Medical data sets are a very important category in all kinds of volume data sets. The 
internal structure of a human body for medical studies has been of interests for a very 
long time. The study of cadaver anatomy was began hundreds years ago. Scientists at that 
time sometimes took a great risk to study the internal structure of the human body and 
made anatomical atlas of human bodies by stealing bodies from tombs! Although some 
magnificent works of anatomical atlas have been achieved, there was still a need for 
sophisticated and clearly presented fine details rather than just primitive hand-sketching. 
Moreover, it would be impossible to cut off a living person. This situation has been 
changed since X-ray was discovered in the middle of 19th century. Since then, different 
medical imaging modalities had been developed. Computer Tomography (CT) is one of 
the most famous and widely used imaging modality. Magnetic Resonance Imaging (MRI) 
is another widely used image modality developed in the recent decade, which is 
specialized for soft tissues in human body for which CT cannot provide clearly imaging. 
Since this thesis focuses on the data of bone and bone cement, we will discuss CT system 
only. 

 

 

2.3.1 X-ray and Computed Tomography 
 

Computed Tomography (CT) depends on X-ray. Wilhelm Konrad Röntgen discovered X-
ray involuntarily in 1895 when he was doing radio tube experimentation. He had no idea 
about this strange ray, so be called it X-ray. Penetration power of X-ray varies among 
different tissues. Tissues with higher density, like bones, absorb greater extent of X-ray 
than tissues with lower density, like muscles. When projecting a beam of X-ray through 
the human body to an X-ray sensitive photographic plate, shadows of different degrees 
will be formed. X-ray is widely used since it has been discovered. However it can only 
provide the projective images of an object. 

 

The first CT scanner, which can provide the internal structures of an object slice by slice, 
was developed by Sir Godfrey Hounsfield in 1972. To produce a single CT slide, an X-
ray tube rotates 360o around the scanned object and casts X-ray through the object in 
different angles. A set of X-ray sensors around the object record the X-ray intensities 
penetrating the object. The computer performs a series of mathematical calculation called 
backward reconstruction on these data, and gives out an array of values.  Each value 
represents the density at a particular location or pixel of a scanned slide. These values are 
called CT number or the Hounsfield numbers. A number of slides are piled up to 
reconstruct a complete volume data of the scanned object.  

 

CT data is very useful to study bone tissues since the values got from CT are related to 
the densities of the scanned tissues themselves. The bone cement whose characteristics 
are very similar to bone tissues can be easily represented by CT scanners, too. In 
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addition, CT data is a rich source for volumetric medical data. That is why CT data is 
chosen.  
 

 

2.3.2 DICOM 
 

CT and other digital medical imaging techniques, like MRI, have been developing 
quickly since 1970s. A lot of medical imaging systems have been developed by different 
manufacturers. These systems use different file formats and create a main obstacle in 
communicating, sharing and exchanging of data among themselves. Hence, a unified 
format for medical image data is needed.  

 

In 1983, American College of Radiology (ACR) and National Electrical Manufacturers 
Association (NEMA) established a standard format for digital medical image data sets. It 
is called Digital Imaging and Communications in Medicine (DICOM). The goals of 
DICOM are to achieve compatibility and to improve workflow efficiency between 
imaging systems and other information systems in healthcare environments worldwide. 
The first version of DICOM was called ACR-NEMA 1.0 Standards Publications No. 300-
1985, which was published in 1985. The second version was published three years later 
in 1988. This version created standardized terminology, an information structure, and 
unsanctioned file encoding. However most of the promise of a standard method for 
communicating digital image information has not been realized until the publication of 
the released version 3.0 in 1993. Manufacturers started to accept this standard and use it 
in their systems widely.  

 
DICOM is a cooperative standard. Vendors cooperate in testing via scheduled public 
demonstrations, over the Internet, and during private test sessions.  Every major 
diagnostic medical imaging vendor in the world has incorporated this standard into their 
product design and most are actively participating in the enhancement of the standard.  
Most of the professional societies throughout the world have supported and are 
participating in the enhancement of this standard as well. 

 
The complicated communication function of DICOM standard is not our main focus. The 
only requirement to DICOM standard is that the construction of data in DICOM files 
made by CT system should be known so that the volume data stored in DICOM files can 
be exported and translated into a format that is acceptable by VolumePro.  
 
The DICOM file is composed of a DICOM File Meta Information (FMI) and a group of 
data elements. DICOM File Meta Information contains the identity of data elements. It 
begins with 128 empty bytes followed by 4 bytes long string “DICM”. These bytes are 
used to distinguish DICOM file from other file formats. FMI includes other useful 
information, too, such as, the transmission file format, the creation application of the file, 
etc.  
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The main part of a DICOM file is the data element. Data elements include not only the 
medical image itself, but also the information of the patient, such as the patient’s name, 
age, gender, and a brief case history, etc. In the part of Object Definition in the DICOM 
standard, it defines the details of data elements where some of them must be included in 
the file and others are selectable. While constructing DICOM files, one must reference 
the data elements definition in DICOM standard documents and include the right 
elements into the files and in the right order. The file created according to DICOM 
standard is able to be read by other application supporting DICOM file format.  
 
Volume data is stored voxel by voxel, line by line, and slice by slice in the data part of 
the DICOM files. Each voxel value is 16 bits long. The voxel value is not density, but the 
Hounsfield numbers. In some DICOM files, the 16 bits long data is stored by a method 
called endian-ness, which stores the lower 8 bits in front of the higher 8 bits. There is a 
flag in the Object Definition to determine the storage mode. To translate the Hounsfield 
numbers to densities, data should be flipped to reverse the lower 8 bits and higher 8 bits, 

HL vvv +×= 256 , 
where Lv  is the low 8 bits in each 16-bit element in a DICOM file and Hv  represents the 
higher 8 bits. An experiential function is then applied to v to translate a 16-bit long 
Hounsfield number into an 8 bits long density value, 

⎪
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⎩

⎪
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⎧
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>
=

=
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vd
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5.0256
3000

3000255
0

)( , 

where ⎣ ⎦x  is an operation that gets the maximum integer smaller than x. Pv is called the 
padding value. Since the volume is a cube and the space scanned by the CT scanner is a 
cylinder, the gap between the cube and the cylinder is padded by the padding values. 
Hence the density of this part is set to 0. 
 
 
 
 

2.4 Bone Cement 
 
When bone fracture occurs, there are several methods for reconnecting the broken bone. 
The most widely used method is using plaster, which fits lightly injured patients. For 
those fractures which occur in the place where plaster cannot be used, such as injures in 
the spine or the hip joint, surgeons sometimes can do nothing. The patients have to lie 
down for several weeks or months to let the bones heal up themselves. During the time 
on the bed, patients cannot even move a bit. It is a torture more than a therapy to the 
patients. If one was heavily injured, surgeons might have to insert screws into the bones 
to join the broken pieces together. However screw insertion has a lot of problems.  First, 
surgeons insert the screws based on anatomic landmarks and their experience. Since all 
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these properties vary among different individuals, surgeons must examine the 2D CT 
sectional images of a patient carefully before an operation to determine screw insertion 
position and angle [12]. The failure rate of screw insertion without computer assistance 
varies between 28% and 39.9% [17]. This risk was reduced after computer-assistance 
surgery or training system, like ANALYZE [18], appeared. The second problem is that 
the screw insertion method can only be used in bones with high density. The bones of 
young people have enough firmness to support the screw inserted into the bone structure. 
However for the elderlies, their bones are much looser than those of the youngsters, and 
are unable to stabilize the screws. The movement of the screws inserted into such bones 
may cause more damages. Just like a screw inserted into a loose brick wall, it will dig a 
big hole in the wall while being jolted. Hence surgeons developed a material called bone 
cement to help curing such fractures.  
 
Bone cement is not a new method to be used clinically. It was invented about 40 years 
ago. The bone cement usually has two components: the powder and liquid component 
(see Figure2.4a). They are mixed together before being injected into the patient’s bone. 
The mixture looks just like sticky glue (see Figure 2.4b). Its concreting time varies with 
different chemical compositions and the quantity of liquid component. Surgeons dig a 
tiny hole on the surface of the broken bone, and inject the bone cement with suitable 
pressure. The bone cement goes into the bone, penetrates and fills the gaps in the bone. 
The concreted bone cement blocks not only stick the broken pieces together, but also 
reinforce the structure of the bone itself. For a light fracture in positions like spine, 
injecting bone cement is enough to help the patient to recover. For the heavy fracture of 
looser bones, surgeons will insert screws after injecting the bone cement. The bone 
cement which is much stronger than the bone surrounding the screws, fixes them in the 
right position and prevent them from moving.  
 
To improve the characteristics of bone cement, surgeons and chemical scientists have 
been upgrading the chemical composition of the bone cement during the past 40 years. 
Different chemical compositions have been tested by many manufacturers and research 
organizations. For example, the chemical composition of Simplex bone cement is: 75% 
Methyl methacrylate-Styrene-copolymer containing residual benzoyl peroxide, 15% 
polymethylmethacrylate, and 10% barium sulfate [19]. Some bone cements use acrylic 
based composition to improved handling characteristics [20]. The goal of all these 
researches aimed at: 

• Easy handling of concreting time; 
• Easy handling of fluidity; 
• Adequate stiffness [21]; Durability; 
• Less toxicity; 
• Bioactivity and low setting temperature [21]; 
• Radiopacity [21]. 

 
On the other hand, surgeons and researchers are also developing mixing techniques and 
injection techniques to allow: 

• Fewer bubbles in the bone cement; 
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• Using minimal invasive techniques to inject bone cement for treating fractured or 
osteoporotic vertebral body [21]; 

• Easily controlled penetration. 
 
To check the improvement of bone cement techniques, there are strong requirements to 
observe the shape of bone cement in the bone on clinical surgery and experimental 
surgery. Surgeons usually check the CT slides to observe the result of injection. It may be 
fast and sufficient while doing clinical operation. However it is not enough in 
experimental injection. Researchers need a more detailed and intuitive view of the shape 
of the bone cement, including its internal structure if possible. To achieve this goal, one 
must distinguish the part of bone cement from other tissues of the bone.  
 
 

2.5 Previous Work on Tissue Classification 
 
Conventional Tissue Classification 
 
This is also called Single-Channel Tissue Classification [22]. As its name suggests, only 
one “channel” is used to classify the tissue in the volume data. The only “channel” is the 
original gray level. In the CT volume data, the original gray level is the density of the 
voxel. This is a very basic and obvious idea because different tissues have different 
densities. Bones must have higher densities than those of muscles. Even in bones 
themselves, the densities vary in different parts. VISBONE has already implemented this 
function by using specified transfer functions [12]. One can make the part with the 
specified density invisible. The hard part of the bone or the parenchyma surrounding the 
bone can be easily distinguished by densities. Figure 2.5 is a typical transfer function to 
classify the hard bone from parenchyma. With this function, the voxels with densities 
lower than a specified threshold are given a very low constant alpha value (opacity) in 
order to make them look more transparent. The voxels with densities higher than the 
threshold are given a linear transfer function to make them visible. A sample volume is 
displayed in Figure 2.6b using a specified transfer function, compared with the original 
image in Figure 2.6a.  
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(a) 

 
(b) 

 
(c) 

Figure 2.4 
Bone cement. (a) Before mixing: Powder and impregnant. (b) After mixing: glue-liked semiliquid. 

(c) After concreting, stone-liked solid.
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Of course, users have more flexibility to adjust attributes of the transfer function. One can 
set more than one threshold to divide the density range into more than 2 parts. In each 
part of the range, different transfer functions, like linear or constant, can be set.  

 

 
 
Local Intensity Structure Tissue Classification 
 
This approach belongs to Multi-Channel Tissue Classification. Multi-Channel Tissue 
Classification was first introduced to work on vector value volume sets, like MRI 
volumes [23][24]. The data in vector value itself has multiple values in each voxel. 
However for scalar value volume data, like CT data, the other “channel” other than the 
original value of each voxel (densities in CT data) should be “created” by mathematical 
approaches. Yoshinobu Sato et. al. introduced an approach to classify tissues for scalar 

v(Densities) t(threshold) 0 255 

1.0 

alpha 

Figure 2.5 

Transfer function.

 
(a) 

 
(b) 

Figure 2.6 
(a) Volume visualized in original way. (b) Volume visualized through specified transfer 
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value volume data sets [25]. The basic idea is to characterize each tissue based not only 
on its original intensity values, but also on its local intensity structures [26].  
 
In [25], tissues in volume, like blood vessels, bone cortices and nodules, are characterized 
by line-like, sheet-like and blob-like structures. To classify these structures, 3D filters are 
designed, which are based on the gradient vector and the Hessian matrix of the volume 
density function combined with isotropic Gaussian blurring to enhance these specific 3D 
local density structure. Different from traditional filters, the outputs of these filters are 
vectors. The outputs are used as multi-channel information to classify the tissues. More 
complicated transfer functions are designed to suit the multi-channel outputs.  
 
[25] shows the results of tissue classification (see Figure 2.7).  
 
However, when conventional and local intensity structure tissue classification methods 
are used on bone cement, both of them fail. Bone cement has special characteristics that 
make neither of the classification methods work well. The density of the bone cement is 
almost the same as bone cortices, which is the hardest part of the bone and usually lies on 
the surface of the bone. Single-channel classification based on density value will 
obviously fail under this circumstance. On the other hand, local intensity structure based 
classification method also fails because the shape of the bone cement is not line-like, 
sheet-like or blob-like. The bone cement looks like nothing but a group of mass. Even 
some day a new filter is invented to be able to classify the mass-like object, there is still 
no way to handle the part where the bone cement joins to the bone cortices. In fact, such 
knds of situations frequently occurred, and the part where two materials joint together is 
indeed the past most interesting to the surgeons.  
 
To our knowledge, there is no feasible method for separating bone cement from other 
tissues, and the requirement of studying the shape of bone cement injected into the bone 
is necessary and urgent. In order to classify the accurate shape of bone cement, CT 
volume data of a bone before and after the injection can be compared. Although this 
simple and feasible method cannot classify a sample which has no corresponding volume 
data before the injection, it is also helpful to the surgeons and researchers: 

• To check the result of injection; 
• To improve the mixing techniques in order to decrease the number of bubbles in 

the bone cement; 
• To study the damage to the bone structure after injection; 
• Help the surgery students learn how to distinguish the bone cement and other 

tissue; 
• Help the computer science researchers develop a classification method to classify 

the bone cement automatically and evaluate the result of this method. 
 
The main problems of this simple approach is that the position of the bone during the first 
scanning before the injection is different from its position during the second scanning 
after the injection. That means it is difficult to compare the two volumes directly because 
the relative positions of the bone in the volumes are different. The result of direct 
comparing of the two volumes is useless. The challenge here is therefore to align the 
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bone in the two volumes before comparison. This is not an easy job. In the following 
chapters, we will focus on the difficulties of this problem and describe the steps of 
volume data alignment. 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2.7 
Visualization of pelvic bone tumors from CT data. (a) Original CT image. (b) 

Classification with 3D local structures. (c) Classification with original densities. 
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Chapter 3 

 

Feature Points Detection in 

Volume Data 
 
 
In this project, volume data of spines are used. A typical raw volume data contains a 
knot of the spine with the size of 512512× pixels in each slice, and 30 to 40 slices in 
each volume. Each voxel value is 8-bit long which represents 256 scale levels. A 
naive way to align two volumes is by comparing voxels directly. Alternatively, some 
special points, called feature points, can be detected and used to guide the alignment. 
Feature points are those points that can point out the locations of some special 
features in the volume. Such locations indicate to the same positions on the object 
represented in the volume. Two volumes can be aligned if these feature points are 
aligned first. Since the two volumes represent the same bone, the only difference 
between these two volumes is the internal structure where bone cement has been 
injected. The external of the bone, and the structure of the bone cortices have not been 
changed after the injection. Detecting feature points in the samples are possible and 
most of these points should be assured to lie on the same position of both samples. 
 
 
 

3.1 Discrete Data Space 
 
Volume data occupies a discrete data space, which is very different form the 
continuous data space. Hence, it is necessary to discuss the characteristics of a 
discrete space first.  
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3.1.1 Connection in Discrete Data Space 
 
The first thing that should be declared is that a voxel is treated as a space-occupying 
rectangular block in this thesis, not a point which does not occupy any space. Under 
this assumption, the definition of the connection in 3D discrete space is given out as 
follows.  
 
A volume data set is a 3D discrete space 3Z  with a set of voxels. A voxel p is 

defined by its coordinates ),,( zyx  in the volume. The neighborhood ),,( wvu  of p 

is a set of voxels that can be defined by one of the following criteria: 
a. Share a face with p. 
b. Share a face or an edge with p. 
c. Share a face, an edge, or a vertex with p. 

The definition a. is called 6-connection because each voxel has 6 neighborhood 
voxels around it (see Figure 3.1a). The definition b. is called 18-connection because 
each voxel has 18 neighborhood voxels around it (see Figure 3.1b). The definition c. 
is called 26-connection because each voxel has all 26 neighborhood voxels around it 
(see Figure 3.1c). In some papers, the 6, 18, or 26-connection is called 6, 18, or 
26-adjacent [27] or 6, 18, or 26-neighbors [28]. 
 
Two voxels p and q is 6, 18, or 26-connected if there is a sequence of voxels 

)...,,( 321 nvvvv  in the volume, such that iv  and 1+iv  are neighbors to each other, p is 

the neighbor of 1v , and q is the neighbor of nv  under the definition of 6, 18, or 

26-connection.  

 

 

 

(a) (b) (c) 

Figure 3.1 
(a) 6-connection. (b) 18-connection. (c) 26-connection. 
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3.1.2 Rotation Problems in Discrete Space 
 
The coordinates in discrete space are all integers. If the coordinates of a voxel are not 
integers after some types of transformations, like rotation, approximate integer 
coordinates will replace the decimal fractions. Problems occur because of such 
approximate replacement. A simple example can illustrate this problem.  
 
Assume there is a very short line L in 3D discrete space, which is composed of two 

voxels, ),0,0(1 wl =  and ),0,1(2 wl = . According to their coordinates, this line is 

parallel to the x-axis, and orthogonal to the y- and z-axis (see Figure 3.2a). First 
represent them in homogeneous coordinates:  
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=

=
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Assume it is rotated by the rotation matrix M, where  
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=M , 

which rotates the line in anti-clockwise direction around the z axis. 
 
The new line L’ after rotated by M is: 
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6
πθ = , then )1,,
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2
3('),1,,0,0(' 211 wlwll ===
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. The coordinates of 

2'l
r

are obviously not integer. They will be represented as integer coordinates 

approximately in discrete space. The 2'l
r

 is approximately represented as )1,,1,1( w  

here (see Figure 3.2b). Assume 
4
πθ = this time, then 

)1,,
2
2,

2
2('),1,,0,0(' 211 wlwll ===

rrr
. 2'l
r

 is supposed to be represented as )1,,1,1( w  

again. The two different lines in continuous space now are the same in discrete space. 
In fact, a line like this that has only two voxels can only be represented by 26 kinds of 
lines after the any application of rotation matrix under the 26-connection definition. 
Under 6, or 18-connection definitions, the kinds of representations of the voxels with 
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decimal-fraction coordinates are even less. Lines such as L’ is not a line any more in 
6-connection. They are only two discrete voxels.  
 
Rotation destroys and changes the connection activity of tiny structures in discrete 
data space. Short lines are divided; voxels are overlapped after such transformation. 
All these make the feature point detection method based on measuring tiny structures 
in the volume fail. 
 

 
 
 

3.2 Interpolation Along z-axis 
 
The CT system stores the data in DICOM files. The raw data is not suitable for 
analysis because the volume data is not isotropic. The resolution in x-y plane, is 
0.28mm per pixel. However the clearance between slices is 1.4mm minimal. It means 
that the resolution along the z axis is much lower than that along x- and y-axis. 
Although VolumePro is able to deal with anisotropic data and eliminates distortions 
automatically, anisotropic data are still not convenient to be analyzed. Four additional 
slices must be interpolated between each two slices in the original volumes. 
 
Linear interpolation is used to add these additional slices for it may be the most 
natural interpolation. In addition, it can create a smooth gradient along the z axis, 
which is very important for the later works. Other interpolation, like quadric 

 
 

 Line L in discrete data space 
 Line L in continuous data space 

Figure 3.2 
(a) Line l. (b) Line l has been rotated 30 degrees around the z axis. 

 

y 

x 0 (z) 1 

(b) (a) 

y 

x 0 (z) 1 
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interpolation, may produce great gradient change along the z-axis, which may confuse 
the feature point detector confuse. 
 

Assume that there are zS  slices in the volume, 110 ,..., −zSPPP , consider the thi  and 

thi 1+  slices 1, +ii PP , where 2,...,2,1,0 −= zSi . The new slices interpolated are 

defined as 4321 ,,, IIII . Each pixel on jI  slice is represented by ),(' yxV j  and each 

pixel on iP  is represented by ),( yxVi . The pixels on each new slice are computed as 

follows, 

}4,3,2,1{,
5

),(),(
),(),(' 1 ∈⋅

−
+= + jj

yxVyxV
yxVyxV ii

ij  

 
After interpolating new slices into the volume, the data space becomes isotropic.  
 
 

3.3 Detecting Feature Points in Discrete 
Data Space 
 
The structure of human bone is complicated and erose. Some features in the bone 
should be found as a reference to alignment, and those features should not be changed 
after injection of the bone cement all. The bone cortices are a good choice because 
they are the hardest part of the bone. They also may be the most regular parts of the 
bone. They are sheet-like [25], but not always in the spines. The bone cortices are not 
changed after injection of bone cement. The points on the sharp corners of the cortices 
are the most wanted feature points.  
 
 

3.3.1 Previous Work on Feature Point Detection 
 
A lot of researches on feature point detection in discrete data space have been done in 
the late few decades, but most of them were implemented in 2D space. Most of the 
researches on feature point detection are the previous step of matching two images. 
Researchers focused on matching 2D images rather than 3D volume or surface based 
data because volume visualization itself is a new branch in computer graphics, and 
very few papers can be found that describe the approaches to detect feature points in 
3D volume data sets. Nonetheless, the approaches detecting feature points in 2D 
images are relevant to the detection of feature points in 3D volume.  
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In most of the approaches of feature detection, edges and corners are the most 
interested features. The traditional way of feature point detection is based on the 
gradient of the values of the pixels. These approaches usually get the differential 
coefficient or partial derivatives according to the x direction and the y direction pixel 
by pixel. The results are then selected by a threshold. To increase the calculation 
speed and predigest the procedure for programming, “filters” or “operators” are 
designed to implement these approaches. Filter or operator is a matrix, usually 3 by 3 
or 2 by 2 large in 2D images. It is a representation of the differential coefficient or 
partial derivatives. Figure 3.3 shows a very simple and typical filter in 2D space that 
is used to detect the edge parallel to the x-axis.  

⎥
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Figure 3.3 
A typical edge detector. 

 
It comes from the gradient magnitude and direction of f: 
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Consider now that only the edge parallel to the x-axis. The values of the pixels should 
change very quickly along the y-direction on such edges. Therefore, only the partial 
derivatives in the y-direction need to be calculated. In discrete space, it is represented 
by: 

)1,(),(),( −−=∆ yxfyxfyxfy  

The corresponding filter is: 
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Note the fy∆  is symmetric about )
2
1,( −yx , so 

)1,()1,(),( −−+=∆ yxfyxfyxfy  instead. The filter becomes 
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The pixels near the target pixel should also be considered. So another two columns 
are added into the filter, 



CHAPTER 3. FEATURE POINTS DETECTION IN VOLUME DATA 24

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−− 111
000
111

. 

 

When this filter is applied to a pixel ),( vu , the value is computed as follows: 
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where ),( yxp  is the value of the pixel ),( vu , and ),( yxf  is the value of the 

element at the xth row and yth column of the filter. A threshold is set for comparing 

with ),( vuP . Any pixel ),( vu  whose ),( vuP  is larger than the threshold would be 

selected.  
 
To measure all the edges, parallel to the x-axis or y-axis, or the edges making an angle 
45 degrees to the axes, we use 4 filters: 
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All four filters should be applied to each pixel if of all directions need to be detected, 
and the maximum value of these results would be the final result. 
 
The previous method is simple but not good for edges which are not abrupt. Some 
improvement methods have been developed, like Laplacian filter. The Laplacian filter 
depends on second order derivatives: 
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The filter is: 
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The Laplacian filter is much easier to use, and its effect is better too. This filter is 
widely used in detecting edges in 2D space. (see Figure 3.4) 
 
There are 3D filters working in 3D discrete data space, too. [30] described an operator 
(filter) to detect edges in 3D discrete data space. 3D edge is an extension of the 2D 
edge. In 3D space, edges are considered as a plane instead of a line as in 2D space. 
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Two sizes of filters were mentioned in this paper. They are used in the same way as 
the filters in 2D space. 
 

 
Although these filters can detect edges in 2D or 3D discrete space, the results are far 
from suitable for meeting the feature points which are available for matching. All the 
pixels or voxels selected by the filter are the group of pixels or voxels belonging to 
the edge. The number of them is still too large for matching. The special pixels or 
voxels need to be re-detected again among the group of points.  
 
Chen introduced an approach to detect feature points in 2D images after the edges are 
measured [29]. Just like lots of feature points detection approaches, it was a 
preprocessing stage for matching two 2D images. This algorithm first find feature 
points belonging to the same edge by some edge detectors (filters), such as the Canny 
edge detector [31] that was used by Chen. The points with high-curvature are then 
detected. Generally, the high-curvature points are the points at the corners.  
 

Chen first connected the pixels on the edge as a chain. Chen defined ic  to be: 
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where ip  was the thi  point in the chain, and the l was a length parameter, which 

was usually set to 4 or 5.  
 

 
(a) 

 
(b)

Figure 3.4 
(a) Original CT image (One slice). (b) Filtered by Laplacian filter. (Just in 2D slice) 
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Second, another quantity id  was introduced, which recorded the least j which gave 

the maximum in the expression for ic  at the thi  point: 

jdi = . 

When ic  attained its maximum value in [i-l,i+l], the thi  point was taken as the 

feature point. If there were more than one such maximum point in [i-l,i+l], the thi  

maximum point with a minimum value of id  was taken. (see Figure 3.5) 

 
In 3D space, an edge is defined as a plane instead of a line. The points on the plane 
cannot be linked as a chain. Hence we would consider them as a net. Finding a 
high-curvature point through all directions on the net is not as easy as along a the line. 
 
Due to the characteristics of 3D discrete data space, most of the traditional methods 
for detecting feature points cannot work well. 3D discrete data space has one more 
dimension than 2D discrete space. There are 3 degrees of freedom in rotation in 3D 
space, 2 more than that of 2D space. The problems occur because of the rotations. The 
main reason is that the relationship among voxels may be totally different after the 
rotation. The voxels originally connected together may be separated after the rotation. 
Some of the voxels may overlap each other and become one voxel after the rotation. 
Traditional approaches may detect several edges at some particular locations of the 
object. However they might not be able to find those edges at the same locations after 

 
Figure 3.5 

Finding point of highest curvature. 

Denote 5=l . Points 4p to 9p  have the same curvature π=ic . But 7p is selected as the 

point of highest curvature because it has the least value of id . 
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the object rotates in the volume. All these reasons make the traditional ‘filters’ in 2D 
data space or 3D data space useless or inaccurate. Even the edges have been detected 
successfully in both volumes, how to measure feature points on the edge is another 
problem. The edge in 3D space is no longer a curve, but a surface. More complicated 
mathematical approached should be used to handle it. Unfortunately, the result is not 
satisfactory enough. 
 
A new method is developed to find the feature points at the sharp corner of the bone 
cortices in the volume data sets. Different from traditional feature point detection 
methods that are based on gradient, this method is based on a statistical method. In 
addition, no edge detectors are needed to measure the edge first. The feature points 
can be detected in one step. This new approach can avoid the structure changing of 
the voxels after rotation. It is insensitive with connection definitions, and produces the 
same result no matter 6, 18, or 26-connection definition is used. It works well with the 
complicated and erose structure in discrete data space, such as human bones. This 
approach can also be modified to detect other structures, such as detecting edges, lines 
or blocks.  
 
 

3.3.2 Detecting Feature Points by Statistical Method 
 
Feature points should lie on the bone cortices which are the hardest part of the bone, 
and the point itself must be a sharp corner of the cortices. Hence a threshold t is first 
set, and only those voxels whose values are greater than t will be considered. The 
basic idea of this method is to conder a cube whose center is the current voxel being 
considered, called the center-voxel. All the voxels in this cube with values greater 
than t are considered as a part of a single object. They all have a uniform value instead 
of the gray-level values. The other voxels in the cube are ignored as if they do not 
exist. The center of gravity (CG) of the object is calculated. By comparing the 
coordinates of the CG with the coordinates of the center-voxel, it is determined if the 
center-voxel lies on the corner of the object, on the edge of the object, on the surface 
of the object or in the middle of the object. If the center-voxel is a point on the corner, 
the CG point must be far from the center axes. Otherwise, the center-voxel must be a 
voxel in the middle of the object if it is very near to the CG, or the object in the cube 
is cloud-like, in which the voxels are distributed throughout the capacity. Range r is 
set to limit the size of the cube centered at the specified voxels.  
 
The CG point of a given object is calculated by the following function in continuous 
space, 
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where vr  is a vector in 3D space, ),,( zyxρ  is the density function corresponding to 

the coordinates. In discrete data space, this equation is represented by, 
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To each voxel ),,( wvu  that is treated as a center-voxel, the feature point detector 

function is defined as: 
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where ),,( wvuV  is the value of the voxel (u,v,w). φ  corresponds to the x-, y-, or 

z-axis. The L(x,y,z) is defined as: 
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where ),,,( dwvuPt
φ  returns one of the coordinates according toφ  if d is greater 

than t, otherwise, ),,,( dwvuPt
φ  returns zero. MIN_VALUE is a constant that 

corresponds to the minimum value of the volume data set. Since CT data is being 
considered, each voxel value in the volume data is 8 bits long, and is from 0 to 255. 

)),,(,,,(_ wvuVwvuP VALUEMIN
φ

 simply gets one of the coordinates of the center-voxel v 

according to φ . )(tN  is a counter that records the number of voxels whose values 

are greater than t in the current cube.  
 
This equation is identical to the previous equation for all the voxels are treated as 
either 1 or 0. Hence ρ is uniformly equals 1 if the value of the voxel is greater than t. 
Therefore,  
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tzyuV
twvuV

wvu
),,(1
),,(0

),,(ρ , 

)),,(,,,(),,( wvuVwvuwvuv Pt
φρ =

r , )(),,( tNwvu
x y z

=∑∑∑ρ ,where zyx ,,=φ . 
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The gray-level volume CT data first is considered as binary a volume. The voxels 
with values greater than t are set to 1, otherwise, they are set to 0. Voxels with the 
values greater than t are renamed as 1-voxels and those with values smaller than or 
equal to t are renamed as 0-voxels. All the soft parts in the bone whose densities are 
low are ignored. To each 1-voxel, a cube centered at it is considered. The current 
1-voxel is called the center-voxel. The x, y, and z coordinates of all the 1-voxels that 
are inside the cube centered at the center-voxel are added respectively. The size of the 
cube is (2r+1)×(2r+1)×(2r+1). The sums corresponding to x, y, or z coordinates, 

respectively, are then divided by r, and this gives F tr
x
, , F tr

y
, , and F tr

z
, . These 

results show the average allocation of 1-voxels inside the cube. Another threshold α is 

set and used to compare with F tr
x
, , F tr

y
, , and F tr

z
, , where ]1,0[∈α . If all these 

three values approximate zero, it means the 1-voxels inside the cube are evenly 
distributed. There should be several situations. The voxels in the cube may be a 
cloud-like object. The cube may fill with 1-voxels everywhere. Or the 1-voxels in the 
cube crowd to a blob-like shape and the center-voxel is just the voxel at the center of 
this blob. All these situations show that the center-voxel cannot be a point at the 
corner. (see Figure 3.6) Otherwise, the center-voxel should lie at a corner, on an edge 
or on a surface. 

 
If all three Fs are greater than α, the 1-voxles lean to one side of each axis. If the cube 
is subdivided into 8 equally-sized quadrants, the 1-voxels must crowd in one quadiant. 
The center-voxel should be a point at the corner. Rarely, the center-voxel may lie on a 
surface or an edge too. (see Figure 3.7) 
 
If only two of the Fs are greater than α, the center-voxels could be a point at the 
corner too (see Figure 3.8a), but the body of 1-voxel group can be a symmetric 
construction. The symmetric plane is contains the axes corresponding to those Fs that 

(a) (b) 

Figure 3.6 
 All Fs are smaller than α 
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are greater than α. On the other hand, it could also be a point on a surface or an edge. 
(see Figure 3.8b,c) 
 

 

 
 
If only one of the Fs is greater than α, the center-voxel may lie on any kinds of 
constructions. Having only one F greater than α, means that the body of the 1-voxel 
group is symmetric about one of the axes. The center-voxel could be one point on an 
edge (see Figure 3.9a). It could also lie on a plane. (see Figure 3.9b) It could be a 
point at a corner (see Figure 3.9c), too.  
 
Hence it is not sufficient to determine whether the center-voxel is a point at a corner 
or not by considering Fs only. A new threshold is introduced to solve the problem, 

λ+= 3rc . 

 

Figure 3.7 
Three Fs are greater than α. 

(a) (b) (c) 

Figure 3.8 
Two Fs are greater than α. 
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If ctN >)( , there are too many 1-voxels in the cube. If there are more than one Fs 

greater than α, the )(tN  need to be compared with c. The center-voxel can be a point 

on an edge or on a plane if ctN >)(  because the number of 1-voxels is large in such 

situations. Otherwise, )(tN will not be more than a quarter of the total number of 

voxels in the cube. The λ introduced here is a parameter to adjust the sharpness of the 
corner. The greater the λ is, the more 1-voxels are allowed inside the cube, and the 
blunter the corner is. However λ must be less than 3r , otherwise the center-voxels on 
a plane or an edge will be considered as corner points too.  
 
In practice, λ is set to about 20. To avoid too many feature points lying on blunt 
corners, this setting also ensures a reasonable number of feature points and is 
compatible enough in different situations. r is set to 7. That means the size of the cube 
centered at each 1-voxle is 15×15×15 large, much larger than traditional filters. If r is 
too small, there are too few voxels inside the cube. For the statistical method is based 
on a large number of samples, it cannot work well in a small number of sample sets. 
Those problems similar to the traditional filters will occur when r is too small. On the 
other hand, the speed decreases if r is too large, because there are too many voxels 
that need to be measured for each 1-voxels. Hence r=7 is acceptable. Another 
parameter t is set to 198. This is an experimental constant value, and values greater 
than 198 in an 8-bit long data set usually corresponds to the harder part of the human 
bone. Figure 3.10 shows a 2D slice extracted from the 3D volume data. Notice the red 
crosses in the image, which are the feature points detected by this algorithm. Most of 
them are exactly at the corner of the bone cortices. Points lying on edges are rare. 
Points on the surface are almost impossible. The number of feature points is limited 
between 100 to 300. Too many feature points will decrease the speed of matching. On 
the other hand, too few feature points will decrease the accuracy of alignment.  

(a) (b) (c) 

Figure 3.9 
One F is greater than α. 
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3.3.3 Eliminate Unsuitable Feature Points 
 
The feature point detection algorithm is applied to the two samples, the one before the 
bone cement injection and the one after bone cement injection. Since these two 
samples are in general different, the feature points that are detected by the algorithm 
are different too. The number of feature points detected in the sample after injection is 
much more than that of the one before the injection. Since bone cement is a 
radiopacity substance, it has very high densities whose values are definitely higher 
than 198. The previous algorithm will consider them as parts of the bone cortices and 
detect feature points in it.  
 
If the part belonging to the bone cement were know, eliminating the feature points on 
it would be very easy. However, what exactly needs to be done is separating the bone 
cement from other tissue. Nonetheless there are still ways to eliminate these feature 
points on the bone cement according to the location of the bone cement. The bone 
cement is always in the middle part of the bone. Only very little bone cement floods 
out of the entrance where the cement is injected. Besides, bone cement cannot change 
the structures of bone cortices, though it may change the internal structure of the 
bone. That means the sample scanned after injection has the difference only inside the 
bone, and the outside of the bone has the same structure. Hence we have developed a 
simple algorithm to ignore the feature points that are located inside the bone.  
 

To each feature point, ),,( wvuf  (it is the voxel whose coordinates are 

),,( wvu actually), the distance to the bone surface is calculated. If the distance is 

larger than a threshold d, this feature point is eliminated in the feature point list. The 
surface of the bone, which is called isosurface in the volume data sets, should be 
extracted first before calculating the distance from a voxel to the surface. However 
isosurface extraction is a hard work. Marching Cubes method was introduced in [1] to 
extract isosurface in volume data sets according to a threshold t. Although it is a 
dependable algorithm for extracting the isosuface, Marching Cubes is very slow and 
is not worthy to be used here. A much easier way is used here to evaluate the distance 
from the voxel to the surface. A new function is defined here: 

)),,((min),,( '

,,
wvuwvuE Dt

zyx φφ=
= . 

The formula D is a counter that records the number of the consecutive voxels whose 

values are greater than t’ along φ -axis direction from f. In shot, imagine there are 6 

radials that start from the f and go along the negative and positive directions of x-, y-, 
or z-axis. The radial stops if it touches a voxel whose value is lower than the 
threshold. The function D just returns the minimum at the lengths of these 6 lines. 
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(a) 

0 

255 

198 

 

(b) 

 
(c) 

Figure 3.10 
(a) One 2D slice in a volume. The red crosses point out the feature points detected by this 

algorithm. (b) Density reference.  (c) The same volume in 3D view. Tiny red cubes point out the 
feature points detected by this algorithm. Note the voxels with low densities have been eliminated 

by a transfer function. 
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While using this function in practice, a problem was found. When a feature point lies 
in the middle of the bone and at the same time there are some “holes” or “bubbles” 
very close to it, then this approach may not eliminate this point in the feature point list 
if one of the 6 radials hits the hole or bubble. “Holes” and “bubbles” are the voxels in 
the volume whose values are very low. Some parts in the real bones are spongy, and 
the bone cement also contains bubbles, which are created during mixing and injecting. 
Therefore, bubbles and spongy parts cause the density as low as the outter space 
whose density is almost zero. In the volume data set, these bubbles and holes are 
represented by independent voxels with very low density surrounded by the group of 
voxels with much higher values. The above algorithm regards that the radial goes into 
the outer space when it touches the hole or bubble (see Figure 3.12). 

 
Hence we improve the original algorithm to avoid such situation. All the voxels 
whose values suddenly decrease for only one voxel will be ignored. Only when the 

Figure 3.12 
Holes and bubbles in the volume disturb the correctness of eliminating unqualified feature points. 

φ  

densities

),,( wvu  

t’ 

d 

A hole or a bubble 

 
Figure 3.11 

The feature points (black cross) deep inside the bone will be eliminated. 
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radial hits two or more consecutive voxels whose values are lower than t’ will it be 
considered as going into the outter space. The presentation of the algorithm in 
pseudocode as follows: 
 

for (each feature point ),,( wvuf ) do 

{ 
for (x=u) to (u+r) do 
//Shoot a radial to positive direction of x axis. 
{ 

if ( twvxv <),,( ) 

{ 

if ( twvxv <+ ),,1(  and )),,2( twvxv <+  

{ 
Erase(v); 

} 
} 

} 
 

for (x=u-r) to (u) do 
//Shoot a radial to negative direction of x axis. 
{ 

if ( twvxv <),,( ) 

{ 

if ( twvxv <− ),,1(  and )),,2( twvxv <−  

{ 
Erase(v); 

} 
} 

} 
 

…//do the same steps on y axis 
…//do the same steps on z axis 

} 
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3.4 Conclusion of Feature Point Detection 
 
Feature point detection produces two sets of points with their coordinates only, one 
set contains the feature points extracted in the volume data scanned before the bone 
cement injection; the other set contains the feature points extracted in the volume data 
scanned after the bone cement injection. The numbers of feature points in the two sets 
are different but not much. The specific location in the object in one volume where 
there is a feature point detected may not have its corresponding feature point in the 
other volume. Even there are pairs of feature points that are extracted on the relevant 
location in the object in both volumes, their geometry characteristics, like distance or 
angles between each other, may not be exactly equal. These problems are not 
introduced by the detection method, but the limitation of the discrete data space and 
the complicated structure of human bone and bone cement. There is a robust matching 
method to be introduced in the next chapter, with tolerance for such inaccurate 
coordinates of feature points.  
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Chapter 4  

 

Approximate 

Point Pattern Matching 
 
 
An approach for matching and aligning a pair of sets of points according to their 
coordinates information only, is introduced in this chapter. 
 
There is no doubt that a number of researches have been done on this field because of 
its urgent and wide applications in practice. The large amount of digital information 
gathered needs to be compared, recognized and registered automatically. The 
matching and analysis of geometric patterns and shapes have become very important 
in various application areas. For examples computer vision, pattern recognition, 
cartography, molecular biology and computer animation, all these fields need the 
technique to match groups of points in 2D or 3D space.  

 

 
Figure 4.1 

BGM-109 Tomahawk cruise missile 
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BGM-109 Tomahawk (see Figure 4.1), the ship or submarine-launched land-attack 
cruise missile equipped by the U.S. Navy, is a typical application of matching 
techniques. The shocking videos broadcast a decade ago during the Gulf War in 1991 
showed how such a deadly weapon flew over 1,000 kilometers, steered clear of 
several civilian buildings and then hit the target through the window. Such an accurate 
navigation system depends on the radar guidance system called Terrain Contour 
Matching (TERCOM). The TERCOM radar compares a stored reference map with the 
actual terrain to determine the position of the missile. In the last few minutes when the 
missile reaches an area very close to the target and is able to get a visual contact with 
the target, it uses another system to recognize the target. It is called Digital Scene 
Matching Area Correlation (DSMAC). It uses a digital camera fixed on the head of 
the missile and compares a stored image of the target (it may have been taken by a 
satellite or spies) with the actual target image (see Figure 4.2). TERCOM navigates 
the missile flying over 1,000 kilometers and just leads it to an area near the target. 
DSMAC recognizes the target to prevent mistaken-attack and finally guides the 
missile to hit the target.  
 
The U.S military, of course, would not describe the details of those two systems 
except the sketches shown in their website. However it must be based on some 
matching methods. It is impossible to compare a whole image with the stored map or 
target image because it is very slow and the computer in the missile is not very 
powerful. These systems must detect some feature points just like what has been 
presented in the previous chapter, and then compare the feature point with the stored 

 
(a) 

 
(b) 

Figure 4.2 
(a) TERCOM. (b) DSMAC 
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data. A literature review is first presented next, before we present our matching 
approach.   
 
 

4.1 Previews Works 
 
Unfortunately, most of the literatures present methods and theories of point matching 
and alignment working in 2D space. It is easy to understand that most of the practical 
works are developed for 2D images, just like the situation in feature point detection. 
Despite some of the approaches are suitable for 3D space, they also project the 3D 
models onto the 2D planes before matching. Although there are few papers we can 
reference, some of the theoretic literatures can be found that describe the basic 
approaches and analyses the speed of matching algorithms.  

 
[32] gives an overview in this field. The general description of the problem is that 
there are two given object A, B and we want to know how much they resemble each 
other. One of them may be transformed, like rotated, translated, or scaled in order to 
be matched with the other one as good as possible. The matching could be a partial 
matching, when A resembles only some part of B, or find the most similar one for a 
given A in a fixed preprocessed set of objects, like character or traffic sign 
recognition. It also could be a simplification of objects, that given an object A find the 
most simple object A’ resembling A within a given tolerance, like finding a polygonal 
line with as few edges as possible that resembles a curve. The transformation that is 
allowed to match objects A and B may be a very simple translation in some of the 
applications. Nonetheless the matching problem usually is not as simple as that, for 
rotation is allowed at the same time that translation is also allowed. Such a 
transformation is called rigid motion or Euclidean transformation. Scaling is another 
transformation that could be considered, which stretches an object by a certain factor 
λ  about the origin in any the dimensions. The transformation which includes scaling 
is not a rigid motion, and would not be considered in this thesis. We will discuss the 
case where both of the finite sets A and B consist of points (those detected by the 
feature point detection algorithm) and the transformation is composed of translations 
and rotations only. 
 
The simplest situation in point pattern matching is Exact Point Pattern Matching. 

Namely, given two finite sets of n points each dR⊂BΑ , , they can be matched 

exactly. It should be stressed that each point in A must have a counterpart in B which 
can be strictly matched to it.  
 
The algorithm for exact point pattern matching can easily be reduced to string 
matching by sorting polar coordinates of the points. Atkinson introduced his 
algorithm in [33], 
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1. Determine the centroids BA cc ,  of the set A and B, respectively.  

2. Determine the polar coordinates of all points in A using Ac  as the origin. 

Then sort A lexicographically with respect to these polar coordinates, angle 

first, length second, and obtain a sequence ),(),...,,( 11 nn rr φφ . Let u be the 

sequence ),(),...,,( 11 nn rr ψψ  where niii mod)1( +−= φφψ . Compute in the same 

way the corresponding sequence v for B. 
3. Determine whether v is a cyclic shift of u, i.e. a substring of uu by some fast 

string-matching algorithm. 
The algorithm gives a positive answer if A and B are exactly congruent. The running 
time is O(nlogn) because the fastest sorting algorithm is O(nlogn), and the other steps 
are linear time. 
 
Alt also introduced his algorithm for 3D exact point pattern matching in [34]. [32] 
declared that the algorithm takes O(nlogn). It also states that such as exact pattern 

point matching could be solved in time O(nlogn) in 2D and )log( 2 nnO d−  in 3D or 

higher dimensions.  
 
Now consider two sets of points A and B with the same number of points n, find a 
transformation matching each points B∈b  into the ε-neighborhood (whereε  is a 
fixed error and 0≥ε ) of some point A∈a . This is called approximate one-to-one 
point pattern matching. There are more variants to this problem: 

• Different types of transformations that are allowed. 
• Solving either the decision problem: given ε, is there a matching? Or the 

optimization problem that finds the minimal ε allowing a matching. 
• A fixed one-to-one-mapping between A and B is either already given or one 

should be found. 
• Different metrics, a concept generalized by Arkin et al. [35] to arbitrary “noise 

regions” around the points. 
 
[32] only demonstrated the algorithms solving the decision problem, which found a 

rigid one-to-one matching between the point sets },...,{},,...,{ 11 nn bbaa == BA with a 

given ε as a Euclidean tolerance. It gave out a very fundamental algorithm first. If 
there is a transformation that is a valid matching between A and B, there must be two 

points ji bb ,  in B being matched to the boundaries of the ε-neighborhoods 

)(),( lk aUaU εε of two points in A. Mapping ji bb ,  onto the boundaries of 

)(),( lk aUaU εε  respectively will leave only one degree of freedom which can be 
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parameterized by the angle )2,0[ πφ ∈  between the vector ki ab −  and the 

horizontal line. For all possible values of φ , any other point in B, jimBbm ,, ≠∈ , 

will trace an algebraic curve mC . This curve intersects the boundary of any )( raUε  

at most a constant number of times. Hence there must be at most a constant number of 

intervals of the parameter φ  where the image of mb  lies inside )( raU ε . For 

example, the curve intersects )( raUε  for 4 times (see Figure 4.3), and there are two 

intervals of the φ  where mb  lies inside )( raUε . In fact the number of intervals 

must be half of the number of intersections because each intersection changes the 
inside or outside state of the curve. All intervals like this are collected. It gives a 

positive answer when for all φ  in one interval the same points of B are mapped into 

the same neighborhoods of points of A, and vice versa. This is checked by finding 

subinterval in )2,0[ π . This algorithm is obviously only suitable for 2D points sets for 

it only seeks 3 pairs of points. It was declared that the running time is )( 8nO . 

Besides, determination of intersection of the curve with the boundary circle was 
another big problem for it might cause nontrivial numerical problems.  However, 
simpler and faster algorithms were developed for this problem. Efrat and Itai [36] 
found a method to speed such one-to-one matching problem in which only translation 

was allowed. The running time is )log( 5.1 nnO . On the other hand, Arkin et al. [35] 

gave numerous efficient algorithms mostly assuming that the ε-neighborhoods or 
other noise-regions of the points did not intersect each other. One of these algorithms 

is carried out in )log( 4 nnO  times under this assumption. Heffernan and Schirra [37] 

gave an alternative method that was, approximate decision algorithms, which only 
gave a correct answer if the given tolerance ε was not too close to the optimal 

solution. The running time was reduced to )( 5.2nO . Others, like Behrends [38], also 

developed approximate decision method whose running time was )log( 2 nnO under 

some assumptions.   
 

Now consider two sets of points, },...,{},,...,{ 11 mn bbaa == BA , where mn ≠ . 

Algorithms for optimally matching such two sets are given by Huttenlocher, Kedem, 
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and Sharir [39]. They used a theory called Voronoi-surface to determine the matching 
under translations only. The Voronoi-surface of the set A is defined as follows: 
 

 

axxd
Aa

−=
∈

min)(  

The function assigns to each point x the distance to the nearest point in A, which is 

the lower envelope of all axxda −=)( . Figure 4.4 shows the graph of )(xda and 

Voronoi-surface in 1D space. They are presented by serials of lines. In 2D space, the 

1a  2a  3a  4a  5a  x

d 

0 

Figure 4.4 

Voronoi-surface in 1D space. )(xd is represented by bold lines. Purple dash lines represent 

)(xd
ia . 

 
Figure 4.3 

Curve of point mb when ji bb , are moved on the boundaries of )(),( ek aUaU εε  
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graph of )(xda  is an infinite cone in 3D space whose apex is at a and the 

Voronoi-surface ( )(xd ) is piecewise composed of these cones and the projection of 

the boundaries of these pieces. (see Figure 4.5) 
 

Finally, the )(min tht  is searched for the optimal translation vector. It declared the 

running time is )log)(( nmmnnmO +  for −1L  and −∞L metric in 2D space and it 

spends more time for −rL metric, where r=2,3,…  

 
In addition, Huttenlocher et al. introduced an algorithm that is called dynamic 
Voronoi diagrams [40], which was able to deal with the matching between two point 
sets allowing not only translations but also rotations under the assumption that the 
point set consists of k rigid subsets of n points each. The running time for an optimal 
match of two point sets in 2D space under arbitrary rigid motions is 

))log()(( 6 mnnmO + . 

 
According to the previous works that have been done by others, it is found that most 
of the algorithms were able to work well and fast in 2D space or when only 
translations are allowed. However algorithms designed for matching in 3D space are 
not good enough except those algorithms for exact point pattern matching. Besides, 
the algorithms for approximate point pattern matching usually have been developed 
for specified problems. Specified assumptions were made in these algorithms, which 
made these algorithms only suitable for limited problems. Some of them limited the 
ε-neighborhoods such that they could not intersect each other, like the method given 
by Arkin et al.  Some of them allowed translations only, like the method introduced 

 
Figure 4.5 

Voronoi-surface in 2D space. 
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by Huttenlocher, Kedem, and Sharir. In addition, they did not discuss how to find the 
minimum t as well.  
 
The balance between speed and accuracy is another problem. Algorithms usually 
sacrificed the speed to reach the optimal matching. The speed of the algorithms that 
finds the optimal result is very slow even in 2D space or allowing translations only. It 
will be much slower if a similar method is used in 3D space and combining 
translations and rotations together. Hence the goal of the matching method introduced 
in this chapter aims at balancing between the speed and the accuracy of the matching 
result as good as possible. 
 
 

4.2 Approximate Point Pattern Matching 
 
The characteristics of the two point sets to be matched are as follows: 

• The two point sets are extracted by feature point detection algorithm. 
• The cardinalities of the two sets are different. 
• Most of the points in one set can lie in the ε-neighborhood of their 

corresponding points in the other set. 
• Some of the points cannot lie in the ε-neighborhood of any points in the other 

set. That means they have no corresponding points in the other set. 
• Both translations and rotations are allowed. 

 
The goal of the algorithm is to find a transformation matrix that transforms one point 
set in order to match good enough to the other point set. First, two Center of 
Geometry (COG) of both sample volumes are obtained. By overlapping two COGs, 
translation can be ignored. Second, points in each set are ordered by their distance to 
COG, which can increase the speed of searching for candidates in the point set. Third, 
three key points are selected in A. These three points and COG must be noncoplanar, 
and their distance to each other should be far enough. Then, their corresponding 
points in B are searched. They are selected according to their distances to COG and 
their relative distances too. After three pairs of points have been decided, the 
transformation matrix M is also determined. All points in B are transformed by this 
matrix. After that, a method, called Average Hausdorff Distance (AHD), is used to 
measure how good the matching is. If the AHD is large, it means the matching may 
not be good enough. Another three pairs of points will be selected until the AHD is 
acceptable. When selecting point in the sets, speeding-up techniques are used to 
increase the speed. The balance between accuracy and speed is the most important 
thing.  
 
The remaining part of this chapter is organized as followings: the traditional 
Huasdorff Distance and the modified Huasdorff Distance (AHD) is discussed first; 
then we will discuss how to determine the transformation matrix M by three pairs of 
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points; after that, the matching method is introduced step by step; speed-up techniques 
are introduced finally.  
 
 

4.2.1 Hausdorff Distance 
 
In order to measure how good the matching is, Hausdorff distance is introduced.  
 

For two point sets A and B in d-dimensional space dR , one-side Hausdorff distance 
from A to B is defined as follows, 

ba
baH −=
∈∈ BA

BA minmax),(~δ , 

where .  is the Euclidean distance in dR . The Hausdorff distance between A and B 

is defined as 

)),(~),,(~max(),( ABBABA HHH δδδ = . 

 
The Hausdorff distance assigns to each point in one set the distance to its nearest 
point in the other set and takes the maximum value of all these values. It works well 
in most cases but may fail in cases where there is noise in the images. It also fails in 
our case because the points in one set that have no corresponding points in the other 
set can be treated as noise in the set. The minimum value of the Hausdorff distance 
measured from a matching doesn’t mean the matching is the best one. For example 

(see Figure 4.6) in 2D space, },,{},,,,{ 3213210 bbbaaaa == BA , 0a  has no 

corresponding points in B that can be matched to it, nd ia  can be matched to 

)3,2,1( =ibi .  Assume there is a transformation that transforms )3,2,1( =ibi  to the 

ε-neighborhood of its corresponding point in A (see Figure 4.6a), and the Hausdorff 

distance is calculated. 10 ba −  is the maximum distance among all the minimum 

distances from the points in A to the points in B, so is it from B to A. The Hausdorff 
distance is: 

10),( baH −=BAδ . 

Then assume there is another transformation that transforms the points in B to the 
other positions (see Figure 4.6b). Obviously, this time the transformation is not as 

good as the previous one because most of )3,2,1( =ibi  don’t lie in the 

ε-neighborhood of any points in A. However the Hausdorff distance shows that the 
transformation is better than the previous one. Although the minimum distance from 
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each )3,2,1( =iai  to its corresponding points in B becomes larger, but 10 'ba −  is 

still larger than any of them. Hence, 

10 '),( baH −=B'Aδ , 

and ),(),( B'ABA HH δδ > .  

 
The new transformation sacrifices most of the points that are used to be matched very 
well just to indulge one point that actually has no corresponding point. It cannot be 
considered as a better matching under such circumstance. The example shows that a 
smaller Hausdorff distance does not mean a better matching while there are some 
points without corresponding points to be matched in one set. 

 
 
Due to this shortcoming of the Hausdorff distance, some modifications to the 
Hausdorff distance have been introduced. One of them discussed in [32] selected the 
minimum distance among all the minimum distances, 
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Only one-way Hausdorff distance was calculated for the partial matching problems, in 
which A is a large set and B is a sub-set of A. The previous example is such a case 
coincidently. This approach cannot be used directly for the matching problem 
discussed in this thesis, which is not a partial matching problem. Not only points in A 
may have no corresponding points in B, but the points in B may have no 
corresponding points in A as well. In addition, the matching method to be discussed 
later assures at least one pair of points to be matched very well. No matter how bad 
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Figure 4.6 
A counterexample that traditional Hausdorff distance fails to measure the matching quality. 
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the matching is, ),( ABkh  or ),( BAkh  will always be zero in this case. Hence it 

cannot be a measurement of how good the matching is. 
 
A new measurement approach based on the Hausdorff distance is used here, which is 
called the Average Hausdorff Distance (AHD). The maximum distance among the 
minimum distance of each point to its corresponding point is no longer calculated, but 
the average of all minimum distances is calculated instead. For each point in A, the 
distance from it to its nearest point in B is computed: 
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The average distance of both ),(~ Baδ  and ),(~ Abδ for all point in A and B are 

calculated, 
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where n and m are the number of points in A and B respectively. Finally, the 
maximum value between them is selected as the measurement of how good the 
matching is, 

)),(~),,(~max(),( ABBABA AAA δδδ = . 

 
The step getting maximum value of each point to its nearest point in the traditional 
Hausdorff distance is replaced by getting average of these distances. It can prevent the 
situation in which the distance of a point to its nearest point is much larger than any of 
the others. However this approach may fail when the number of points is few. 
Fortunately, the point sets we have to deal with here always have enough points. 
 
 

4.2.2 Transformation Matrix 
 
Theoretically, if there are four pairs of points got from two point sets respectively in 
3D space, the transformation that matches the two sets A and B is fixed. Knowing a 
transformation matrix M, which is a 4×4 matrix, each point or vector 

( )1'''' zyxP =  in 3D space 3'R  can be transformed to 3R  by M, 

( ) TMPzyxP '1 ==  
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The transformation matrix M includes not only Euclidean transformations, like 
translations and rotations, but also other transformations, like scaling, if the four pairs 
of points are not well defined. Nonetheless, for the problem discussed in this thesis, 
all the other transformations except translations and rotations are not allowed. If one 
pair of points is defined to be on the same position (see Section 4.2.3) and the other 
three pairs of points are carefully selected, the transformation matrix M must be a 
Euclidean transformation and only rotation around this reference point is allowed. 
“Well selected” means the relative distances between any two of those three points in 
one combination are similar to the distances between the corresponding points in the 
other combination. Represent the transformation matrix M as follows, 
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where M’ is a 3 by 3 matrix. When 1,0 33231303323130 ======= mmmmmmm , the 

determinant of M’ equals 1, and IMM T ='' , M is an Euclidean transformation that 
allows rotation only. The transformation matrix M can be calculated by: 
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where iiiiii zyxzyx ',',',,,  are the coordinates corresponding to the points iP  and 

iP' . 3P  and 3'P  are defined to be on the same position. 

 
In practice, even with very well matched points found between the two sets, the 
positions of the corresponding points, the distances of each pair of corresponding 
points or the angles between each pair of corresponding points are not exactly equal. 
This is caused by not only the feature detection algorithm but also the rotation 
problems in discrete space. In this circumstance, the M would not be a strict rotation 
matrix. Tiny distortion occurs after the transformation. The distortion is harmful to the 
final alignment because the whole volume will also be rotated by this matrix in order 
to compare the samples before and after the bone cement injection. The distortion 
reduces the accuracy of matching.  
 
Although there are other methods that can determine the rotation matrix and prevent 
the distortion at the same time, the distortion sometimes is useful to measure how 
good the matching is. When a bad matching is found, the three points lie a bit far from 
their corresponding points. The triangle comprised by these three points is different 
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from the one comprised by these corresponding points, like length of the board or 

angles. Hence M would not be a strict rotation matrix around )'( 33 PP . Translation, 

scaling, or even perspective are included. When M is applied to other points, 
distortion changes their positions too. The points that should overlap their 
corresponding points after transformation would not do so. The points far from 

)'( 33 PP  are seriously affected by scaling and other non-rigid transformations. The 

AHD (Average Hausdoff Distance) will be large when one set matches to the other 
after such transformation. (see Figure 4.7) It is good to test how good the matching is 
by calculating AHD. 
 
Since the matching points are carefully selected whose relative position is similar 

enough, the distortion will be very small. When 33 , ii mm , and the determination of M’ 

converge to their expected value, the transformation can be regarded as a rotation 

approximately. Actually, the )2,1,0(,, 33 =imm ii  are of the order 610−  when the 

acceptable matching was found in all the test cases. 33m  always exactly equaled 1 

and the determination of M’ is very close to 1 of the same time. The distortion of the 
point set after rotating was hard to detect visually. Using such transformation on the 
whole volume, the distortion will be very tiny too, which would not bring about any 
negative effect while comparing the two samples. 
 

 

 

(a) AHD=18.195 

 

(b) AHD=3.959 
Figure 4.7 

The green points represent a group of points in one set and the red ones represent points in the 
other set. 

(a) A very bad matching. Transformation matrix M enlarges the distortions heavily. The AHD 
value of this matching is extremely large. (b) A much better matching of the same pair of point 

sets. 
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4.2.3 Geometric Center of Volume 
 
It has been mentioned that there is a point fixed when calculating transformation 

matrix. It is named 3P  or 3'P . It has also been mentioned that translation is allowed 

in this point matching problem discussed in this thesis. However the transformation M 

matrix only allows rotation around the point 3P  or 3'P . This is not a contradiction, 

for a transigent method is used to deal with the translation between the two point sets. 
 
A bone can obviously be treated as a rigid object. Although the position or the angle 
is different in different scanning, the shape of the bone would not be changed at all. 
Consider the procedure of bone cement injection. Surgeons first dig a very small hole 
in the bone in order to insert the needle into the bone. The bone cement is then 
injected into the bone through the needle. Bone cement infiltrates into the gaps in the 
bone. Little bone cement overflows out the hole where it is injected. Surgeons always 
clean up the bone cement overflowing out of the surface of the bone for the bone 
cement exposing outside the bone is harmful to other organs. Comparing the sample 
bone before bone cement injection and the same one after injection, we can find: 

• The surface or the shape of the bone has not been changed except for the tiny 
hole through which the bone cement has been injected. 

• All the bone cement has been injected inside the bone, which has changed the 
internal structure of the bone, but has done nothing to the external structure of 
the bone. 

• The allocation of the density of the bone has been totally changed after 
injection, so the center of gravity of the bone has been changed too. 

The only thing that hasn’t been changed after injection is the shape of the bone. That 
means the geometric center of the bone remains unchanged relative to the bone. 
Hence it is still possible to find the similitude between the two samples in order to 
determine the translations.  
 
The approach calculating the Center Of Geometry (COG) is very similar to the 
approach introduced in Chapter 3, which is used to detect the shape corner in a fixed 
cube. This time the fixed cube is the whole volume, and it is unnecessary to compare 
the result with the center-voxel.  
 
First a threshold t is set to ignore noises in the volume. Some of the voxels have very 
low values and are located outside the bones. There are voxels with low values inside 
the bone too. Hence the value of t should be set very carefully so that it can ignore the 
noise but preserve the voxels inside the bone. In our experience, t is set to 5 in an 8 bit 
long data set for very few voxels in the bone have values lower than 5. Define the 
binary function as follow, 
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where ),,( zyxv  presents the value of the voxel corresponding the coordinates of 

),,( zyx . The volume is set to the binary volume now. Since all the voxels are 

presented by either 1 or 0, the changes in density after the injection can be ignored. 
No matter how much bone cement has been injected in, the two samples of the same 
bone scanned before and after the injection now are the same. Based on the method 
for calculating the CG, COG can be obtained from this binary volume. The formula 
that calculate the CG in discrete space is 
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which returns out the coordinates of the voxel if its value is greater than t.  
 
COGs of both sets are calculated. All the points in B are translated by vector 

AB COGCOG − . It is presented by, 

miCOGCOGbb ABii ,...,2,1),(' =−−=  

The coordinates in A and B now are unified. By overlapping the centers of geometry, 

translation between the two can be ignored. To simplify the notation, ib'  that has 

been translated are still represented by ib . In the rest of the thesis, ib  denotes points 

in B whose coordinates have been translated by AB COGCOG − . 
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4.2.4 Seeking Corresponding Points 
 
To match two point sets in 3D space, four pairs of points need to be found as the key 
points. The assumptions are as follows: 

 One pair is defined, using the centers of geometry of the two sets, and they have 
been translated so that they overlapped each other. 

 There are plenty of points in both sets. 
 There must be points in the sets that can be found to match to each other. 

 
The method for finding the remaining three pairs of key points now is introduced 
below. 
 
There is an old method that finds out the position of the source of the radio wave, 
called radio fixing. The method was widely used to detect spies in World War II. The 
theory is very simple. Assume a radio station continuously broadcasts the radio wave. 
A radio wave detector, called radiophare, can receive the wave and figure out which 
direction the signal is the strongest. However it is unable to detect the distance to the 
radio station. So two units of radiophares are needed. Both of them can detect the 
direction of the source. They can fix the position of the source by combining the 
relative position of the units. (see Figure 4.8) 

 
 

Figure 4.8 

Radio fixing theory. Knowing the position of radiophere A, B and the angle α,β, the 
coordinates of radio station can be calculated by fundamental trigonometric functions. 

Radiophare A 

Radiophare B 

Radio Station 

α 

β 
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The approach used here is very similar to the radio fixing. Assuming three points have 
been selected in A, the corresponding points in B are going to be found. The 
difference between these two methods is, the radio fixing method can detect the 
direction of the source but not the distance; on the contrary in our method, the 
distance from the point to COG is known, but the direction is going to be found.  
 

Select three key points in A 
 
Three points in A are selected first as key points. Theoretically, these three points can 
be selected randomly except that all four points must be noncoplanar, including the 
COG.  If the corresponding point of one of the key points cannot be found in B, 
some other points in A will replace it. Since we assume that the number of feature 
points in each set is large enough, there must be three pair of points that can be found. 
Hence the replacement of the key points can be found somewhere. However random 
selection has many problems. First, the position of the points selected may be very 
close to each other, even the distance of them is as small as ε. While searching for the 
corresponding points in B, it is very hard to determine which point the candidate 
corresponds to. The additional step that compares the distances from the candidate to 
both of the other two key points must be added. This is a waste of time. Second, it is 
hard to find the corresponding points of the key points in set B. Because the key 
points have been selected randomly, it may be in anywhere in the list, which forces 
one to search the whole list of B. 
 
To avoid these shortcomings, all the points in both sets are sorted by the distance to 
the COG, from far to near. The sorted sequence is represented as follows, 

),...,,(
21 niiiA aaa=Θ  

where A∈pa , and COGaCOGa
kk ii −≥−
+1

. 

The first key points in A is chosen to be the farthest point to the COG, called 

1

1
iA aP = . The second key points is chosen to be the nearest point to the COG, called 

niA aP =2 . The last one is selected in the middle part of the point list. Strictly speaking, 

the first candidate of the third key point is the one on the one third position of the total 
list, called 

⎥
⎦
⎥

⎢
⎣
⎢

=
3

3
niA aP . By using the fastest sorting algorithm, the running time of 

sorting both sets is )loglog( mmnnO + . 

 
The above selection method avoids selecting two points which are too close to each 
other, because the three points are distributed throughout the sequence, and hence 
their distances would be far enough to the others. However it cannot ensure that these 
three points are not collinear. A remedial approach will later be introduced in the 
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method on how to select the third key point 3
AP . Nevertheless for the time being, these 

key points are assumed not to be collinear and to be completely suitable for the later 
steps. 
 
Search the first candidate in B  
 

The first candidate corresponding to 1
AP  is presented by

rjB bP =1 . Since the point set 

B has been sorted, ),...,,(
10 mjjjB bbb=Θ , it is very easy and fast to search 1

BP . 

Obviously, 1
BP  cannot be the fastest point to COG in B, it should be the point whose 

distance to COG is the most similar to the distance from 1
AP  to COG. For Bbq ∈∀ , 

rjq ≠ , 

COGPCOGbCOGPCOGb AjAq r
−−−≥−−− 11 . 

There is no need to search all the points in B, but only search from the beginning of 

the sequence BΘ . The point 
rj

b , 

where COGPCOGbCOGPCOGb AjAj rr
−−−≤−−−

+

11
1

, is selected. 

 
Search the second candidate in B   
 

The second candidate selected in B to match 2
AP  is represented by

sjB bP =2 . There is 

no need to search the whole set B, either. 2
BP  is selected by searching the sequence 

BΘ  from the tail to the head. The point 2
BP  cannot be selected in the same way as 

1
BP  where only the distance to the COG is being considered. 12

BB PP −  must also be 

similar to 12
AA PP − . The points in the sequence that ε>−−− 121

AABj PPPb  

should not be considered. In the rest of the points in the sequence, 2
BP  is selected in 

the same way as 1
BP . The point 

sj
b  

where COGPCOGbCOGPCOGb AjAj ss
−−−≤−−−

−

22
1

, is selected to be 

2
BP . 
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Search the third candidate in B 
 

The third candidate selected in B to match 3
AP  is represented by

tjB bP =3 . Since 3
AP  

is in the middle part of the sequence, it cannot be searched like 1
BP  or 2

BP . There is 

no hint on where 3
BP  exactly is. This point may appear in any position of BΘ . 

Hence, it has to be searched from the very beginning of the sequence BΘ . 3
BP  also 

needs to satisfy the same condition as that in searching 2
BP , 

ε≤−−− 131
AABj PPPb

t
 

and  

ε≤−−− 232
AABj PPPb

t
. 

Points which do not satisfy these conditions in the sequence will be ignored and the 

rest of them are searched. The point 
tj

b  

where COGPCOGbCOGPCOGb AjAj tt
−−−≤−−−

+

33
1

, is selected to be 

3
BP . 

 
To understand how the method works, please see Figure 4.9. Assume 3 key points 

have been selected in A, and the COG has already be fixed, the candidates of 1
BP  are 

on the sphere that is centered by point COG and whose radius equals COGPA −
1 . 

Here the sphere can be imaged as a shell whose thickness is ε2 . All the points in the 

shell should accord to the condition that is able to match 1
AP . The points with the 

closest distance from the COG comparing to COGPA −
1  is selected (see Figure 

4.9a). In selecting the second point 2
BP , two such shells are imaged. One is centered at 

COG and its radius is ε±−COGPA
2 . The other is centered at 1

BP  and its radius 

is ε±− 12
AA PP . If two spheres intersect each other, the intersection will be a circle or 

just a point. When the two shells described above intersect each other, the intersection 
will be something like a ring. The intersection should be a very tiny block too if and 

only if COG, 1
AP , and 2

AP  are on the same line. However, these two shells must 
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intersect each other for COGPCOGPPP AAAA −≥−+− 1212  (see Figure 4.9b). 

There are very few points located within this ring. By searching the sorted sequence 
of B, it can be determined quickly whether there are some points satisfying to this 
condition, and select the best one among them. If there are no points lying in this ring, 

it is also very quick to find out if ε>−−− COGPCOGb Aj
2  (see Figure 4.13). 

 
 

In searching 3
BP , there are more restrictions. First,  

εε +−≤−≤−− COGPCOGPCOGP ABA
333 ,  

which forms the first shell whose center is at COG and with radius ε±−COGPA
3 . 

Let 1S denote the set of all the points in this shell. Second,  

εε +−≤−≤−− 131313
AABBAA PPPPPP , 

which forms the second shell whose center is at 1
BP , and with radius ε±− 13

AA PP . 

Let 2S denotes the set of all the points in this shell. Third, 

εε +−≤−≤−− 232323
AABBAA PPPPPP , 

which forms the last shell whose center is at 2
BP  and with radius ε±− 23

AA PP . Let 

3S  denotes the set of all the points in this shell. (see Figure 4.10) 

COG 

ε  

1
AP  

(a) 

Figure 4.9 

2
AP  

1
BP  

12
AA PP −  

(b) 
Only 2D representation 

COG 
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3

BP  is in the set 321 SSSS ∩∩= . Theoretically, S has at most two points, but it 

cannot be an empty set. 

 
Since the ε-neighborhood is being considered, the intersections of these three shells 
are not two points but two tiny blocks. There may be several points lying in both 
blocks. Only points in one block are the right candidates. Here is a counterexample of 
what will happen when a wrong block is determined. (see Figure 4.11) 
Assume the points in both sets are lying at the corner of a cube, but three of the eight 

points are missing. They are 843 ,, aaa  in A, and 652 ,, bbb  in B. The width, length 

and the height of the cube are all 1. In this special case, the distance from the COG to 
each point is specified to be equal, that means the COG is in the middle of the cube. 

Hence any point can be selected as i
AP or i

BP . Here assume 6
3

2
2

5
1 ,, aPaPaP AAA === . 

On the other hand, every point in B can be matched to any point in A. Assume 

3
2

8
1 , bPbP BB == ，both 4b  and 7b  are candidates for 3

BP  because both of them lie in 

S that is specified by the three key points in A.  
 

When 7b  is selected as 3
BP , the transformation that matches B to A can hardly be 

solved by rotating around any axes.(see Figure 4.11b) The triangle 873 bbb∆ is the 

mirror image of 625 aaa∆ . There is no possible Euclidean transformation that can 

Figure 4.10 ε representation is omitted. 
In continuous data space, S has two points, or one point if and only if 321 ,, AAA PPP  is linear. S 

cannot be an empty set for 12122313
BBAAAAAA PPPPPPPP −=−≥−+− . 

COG 

COGPA −3  

2
BP  

32
AA PP −  

1
BP  

31
AA PP −  

S 
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transform B to A if these three pairs are selected. Nonetheless there should be a better 

match if 4b  has been selected as 3
BP . Although such an incorrect matching can be 

prevented if the AHD is carefully checked (the AHD of the matching is 0 if 4b  is 

selected as 3
BP , which is much smaller than if 7b  is selected as 3

BP ), we still hope to 

prevent it before testing the AHD for computing the AHD is slow. 
 

 
An additional step is added to avoid such situation. Define the Positive Normal Vector 

(PNV) of plane 21
ΨΨPPCOG  (where BA,=Ψ ) as )()( 21 COGPCOGP −×− ΨΨ . The 

points on the same side with PNV as be considered. (see Figure 4.12)  
 
This additional step is faster than calculating the AHD. It is very easy and fast to 
calculate the PNV, since 

))(),(),(( 212121212121 yyyxxzzxyzzyV −−−−= ,  

4b  2
3 , BPb  

1a  2
2 , APa  

3
6 , APa  

7a  
1

8 , BPb  7b  

1b  

(a) 

l 

(b) 

1
5 , APa  

Figure 4.11 
The original point sets. Big dots denote the points in the set. (b) B is rotated around l if right point 

is selected.  
 



CHAPTER 4. APPROXIMATE POINT PATTERN MATCHING 59

where ),,( 111
1 zyxCOGP =−Ψ  and ),,( 222

2 zyxCOGP =−Ψ . Determining the side of 

the plane 21
ΨΨPPCOG  on which the point lies is also easy. The cosine of the angle 

between PNV and COGi −ψ  is given by, 

VCOGP
VCOGP

−
⋅−

=
(

)(cosθ ,  

where COGP i −=ψ . θ  lies in )
2

,0( π , if 0cos >θ . Since the denominator is always 

larger than zero, only VCOGP ⋅− )(  needs to be calculated. This computation uses 

only addition and multiplication, and hence is very fast. This step is used for selecting 

both 3
AP  and 3

BP , which can save the time searching for points on the negative side. 

It also prevents selecting key points that are coplanar with the COG.  
 

 
 
 

4.2.5 Partially Optimal Result 
 
Theoretically, the optimal matching can be found if speed is not a consideration of the 
algorithm. Here is the slowest method to select key points and their corresponding 
points. Specify the three key points and search for their corresponding points one by 
one in the whole set of B. There is no doubt that this method can find out the optimal 
matching eventually, but the speed is extremely slow and the running time 

is )( 33 mnCCO mn . There are 3
nC  possible combinations in A that can be selected as the 

key points and 3
mC  possible combinations that can be selected in B to match the key 

plane 21
ΨΨPPCOG  

1
ΨP  

2
ΨP  

PNV 

Figure 4.12 
Only points on the positive side of the plane will be selected. 
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points in A. For each available matching, the AHD should be tested, whose running 

time is )(mnO . Hence the total running time is )()( 4433 mnOmnCCO mn ≈ . It is much 

slower than [40], whose running time is ))log()(( 6 mnnmO + . 

 
Nonetheless the optimal solution is actually not necessary here. Speed is, however, an 
important consideration. Since all the corresponding points are selected in the 
ε-neighborhood of the key points, these three points has already been matched to the 
key points. Therefore, only three pairs of points can determine a matching. Finding 
out such points is a very easy and fast task if the method introduced in this thesis is 
used. In fact, it will be introduced as a speed-up method in a later section. However it 
may encounter a serious problem, which is called isomorphic combination. The three 
key points in A form a triangle. At the same time, their three corresponding points 
also form a triangle. If they lie in the ε-neighborhood of the key points, these two 
triangles have almost the same shape. If there are more than one such triangles that 
are composed of three points in B, it has to be decided which combinations of three 
points should be selected. The AHD testing is still necessary to prevent such a 
situation. When key points match to their isomorphic combination, other points 
cannot be matched to their corresponding points. The AHD will then be a larger 
number and such a match can be eliminated easily.  
 
In this section, we focus on how to select both key points and their corresponding 
points in the two sets skillfully in order to reach a lower AHD value and keep an 
acceptable speed at the same time.  
 
It is unnecessary to compare every point in B with the key points for a candidate 
should lie in the ε-neighborhood of a key point. A candidate lies outside the 
ε-neighborhood of a key point when the difference between its distance to the COG 
and the distance from the key point to the COG is larger than ε. (see Figure 4.13)  
 
Since the points in the set have been sorted by their distance to the COG, it is very 
easy and fast to determine which point in B are possible candidates. In addition, it can 
also select the best one to match the key point. The pseudocode describing the process 
of selecting candidate in the sorted sequence is as follows: 
 
 
/* oa is the distance from the key point to the COG. Assume a is at the beginning of 
sequence A*/ 
 
dis=MAX; 
/*Initial the dis to maximum, which could be the maximum size of the volume. This 
can assure the first comparing is valid. */ 
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for (i=0;i<m;i++) 
{ 

ob=GetDistance(B(i)); 
/*Get one point in B from the farthest to the closet and calculate its distance to 
COG*/ 
 
if (dis<|ob-oa|) 
{ 

if  (|ob-oa|>ε) 
{ 

return -1; 
/*if |ob-oa|>ε, there is no point available. Return -1.*/ 

}else 
{ 

return i-1; 
/* if |ob-oa| is larger than the previous one, the previous b is the best candidate 
corresponding to a.*/ 

}  
}else 
{ 

dis=|ob-oa|; 
/* if this time the difference between ob and oa is smaller, then, the previous one 
is now the most similar one to oa. The next b will be test in the next loop.*/ 

} 
} 
 

For the points like 1
AP  and 2

AP  at the two ends of the sequence, searching their 

candidate in B will be very fast. For the point 3
AP , searching its candidate is a bit 

slow. Although the first possible 3
AP  lies at the one third part of AΘ , it doesn’t mean 

the point corresponding to it also lies at the one third part of BΘ . Hence 3
BP  needs 

to be searched from the beginning of BΘ . 3
BP  can be found after searching about 

half of the sequence. It costs )(mO  at worst.  
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ε  

a 

b

b’ COG 

 
By searching for points in the sequence for the best one lying in the ε-neighborhood 
of the key points and ignoring those lying outside the ε-neighborhood, all the three 
selected points must match to the key points very well. However it does not mean 
other points will match their corresponding points well too. To get a better matching, 
more key points and their candidates should be test. All the possible combinations of 
key points in A will be tested. Some of the combinations cannot find valid candidates 
in B and the AHD for such cases would not be tested. Otherwise, the AHD is tested 
and the combination and its corresponding candidates with minimum AHD is selected 
to be the final result. The pseudocode is as follows: 
 
ahd=MAX; 
/* Initial ahd to MAX. This can assure the first comparing is valid. */ 
while (Available()) //outer loop 
/* If there are still points never been tested, continue the loop. */ 
{ 

while (Available()) //middle loop 
/* If there are still points never tested, continue the loop. */ 
{ 

while (Available()) //inner loop 
/* If there are still points never tested, continue the loop. */ 
{ 

Pa1=Select1InA(); 
Pa2=Select2InA(); 
Pa3=Select3InA(); 
 

Figure 4.13 

When ε>−−− COGbCOGa , b lies outside the ε-neighborhood of a key point whatever 

the rotation around COG is. 
Proof: Assume there is a rotation that brings b to b’ around COG, where b’, a and COG are 

collinear. Since ε>−−− COGbCOGa , and 'ba −  is minimum now, so there is no 

rotation that can transform b into the ε-neighborhood of a. 
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Pb1=Search1InB(Pa1); 
Pb2=Search2InB(Pa1,Pa2,Pb1); 
Pb3=Search3InB(Pa1,Pa2,Pa3,Pb1,Pb2); 
 
if (Pb3>=0) 
/* If Pb3>=0, three candidates corresponding to their key points are found. */ 
{ 

newAhd= TestAHD(Pa1,Pa2,Pa3,Pb1,Pb2,Pb3); 
/* Test the AHD of this matching. */ 
if (ahd>newAhd) 
{ 

ahd=newAhd; 
KeepCombination(Pa1,Pa2,Pa3,Pb1,Pb2,Pb3); 
/* If the new AHD is smaller then the previous one, remember the current 
matching. If there is no other matching whose AHD is smaller than that of 
this, the matching is selected to be the final matching. */ 

} 
} 
Ignore(Pa3,3); 

/* Ignore the current 3
AP . This one won’t be selected in the next inner loop. */ 

} 
Reset(3); 
Ignore(Pa2,2); 
/* Reset the point sequence A, for all the points ignored should be re-selected in 
the next middle-loop except the Pa2. */ 

} 
Reset(2); 
Ignore(Pa1,1); 
/* Reset the point sequence A, for all the points ignored should be re-selected in the 
next middle-loop except the Pa1. */ 

} 
 

Here are three loops: inner loop, middle loop, and outer loop. In the inner loop, 1
AP  

and 2
AP  are fixed for each different 3

AP . Function Select1InA(), Select2InA(), and 

Select3InA() are used to select key points in A. Any points in A that is marked by the 
function Ignore() will be ignored, for such points have been selected and tested 
before. Corresponding candidates for the selected points are searched in the sequence 

BΘ  by the approach introduced above by function Search1InB(), Search2InB(), and 

Search3InB(). If all the corresponding points are found, the AHD of this combination 
is tested and remembered if it is smaller than any previous ones. No matter whether 
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the corresponding points have been found or not, the current 3
AP  is blocked by 

setting the flag in a corresponding array after the current search. In the next inner 

loop, this point will be ignored when selecting 3
AP  by checking the flag array. The 

function Available() return a positive value if there are still points that have not be 
flagged. The inner loop completes when all the points have been selected and tested. 

This time, 2
AP   is flagged. Function Reset(i) resets the elements marked by i in the 

flag array. Hence all the points will be selected as 3
AP  again except the one that has 

been selected as 2
AP , because its corresponding element in flag array has been set to 2. 

The outer loop works as the same.  
 

It is easy to observe the running time of this algorithm is )33( 434 mnmnnO ++ . 

There are three loops, each of them need to do n times. The main body nesting in the 
inner loop does several jobs, selecting three candidates, which costs linear time at 

worst, searching 1
BP  , 2

BP , and 3
BP , which costs linear time at worst, and calculating 

the AHD. In the worst situation, the running time of the main body is 

)33( nmmnO ++ . Including the three loops, the total running time at worst is 

)33( 434 mnmnnO ++ . It is a bit faster than [40], but it can not reach the optimal 

result because not all the possible combinations in B have been tested. However, this 
method can get the optimal result among the combinations that candidate points lie in 
the ε-neighborhood of all the possible given key points, so called partial optimal 
result. 
  
 

4.3 Speed-up Technique 
 
In this section, some speed up techniques will be discussed. Carefully designed data 
structure and programming skills can be helpful to increase the speed.  
 

4.3.1 Increasing Speed in Searching 3
BP  

 

3
BP  is a bit troublesome to be searched for it is in the middle of BΘ . When 3

AP  is at 

the thi  position of AΘ , it does not mean that 3
BP  is at the same position. All the 
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BΘ  should be searched to avoid missing any suitable 3
BP . This step can be finished in 

)(mO  time. Although it can be finished in linear time, it has to be done once in each 

iteration.  
 

Here is a method for the speeding up the search for 3
BP . Assume that 3

AP  is at the thi  

position of the sequence, and the search for 3
BP  begins at the thi  position of BΘ . 

Compare the distance from the current element to the COG with COGPA −
3 . If 

COGPCOGb Aji
−<− 3 , search forwards, else search backwards. This method may 

have to search many points if the difference between COGPA −
3  and COGb

ij
−  

is too large.  
 
Another method is using a hash table. A hash table is a referential index in which each 
element points to the position of a group of elements in another list or sequence.  A 

well designed hash function )(kh  maps a small number of keys k , called collisions, 

onto a unique integer i .  If the number of collision is sufficiently small, the hash 

table gives )1(O  search time.  

 

Let A
iD  denote the thi  element in AΘ  and B

jD  denote the thj  element in BΘ . 

Design a hash function )(kh , put a group of elements piiiqiqi aaaaa +++−− ,...,,,...,, 11  

such that, )(kh  gives out a unique integer if ε⋅≤− +− cDD A
pi

A
qi . The hash function is 

defined as follows, 

⎥⎦
⎥

⎢⎣
⎢

⋅
−

=
εc

kDkh MAX)( , 

where MAXD  is the longest distance from the points in the two sets to the COG, and c 

is a constant. Operator ⎣ ⎦x  gets the maximum integer smaller than x. This function 

maps a group of collisions onto a unique integer. An anti-hash function is also defined 

to map the unique integer to a group of elements in BΘ , 
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⎪⎩

⎪
⎨
⎧

⋅≤−⋅−≤
=⋅≤−⋅−≤−

=
otherwisecDckDb

cDckDbif
kh B

jMAXjj

B
jMAXj

}0|{min
}0|{1

)('
εε

φεε

 

and },...,,{)('' )1('1)(')(' ++= khkhkh bbbkh . 

 

 

An array, called hash array, stores the index of BΘ  indexed by )( A
iDh . Any ia  is 

mapped to a unique integer by pDh A
i =)( . This integer p is the index of the hash 

array. The value of thp  element in the hash array is given by )(' ph , which points to 

the first element of the available points is BΘ . These points must be suitable to such 

condition: ε⋅≤− cDD B
j

A
i . It is easy to prove: 

Let ia  is mapped to a group of points sjjj bbb ++ ,...,, 1  in BΘ  listed from far to 

near with respect to COG, via pDh A
i =)(  and )(' ph . Due to the definition of the 

hash function and the anti hash function, the following equations hold: 

)1()1( →⋅+−≥≥⋅− εε pcDDcpD MAX
A

iMAX .  

MAXD

ε−MAXD  

ε2−MAXD  

MIND

⎥⎦
⎥

⎢⎣
⎢ −
⋅−

ε
ε MINMAX

MAX
DD

D  

0a  

1a  

2a  

3a
 

na  

0b  

1b  

2b  

3b  

mb  

h(k) h’’(k)

Figure 4.14 
Elements are mapped by Hash function and anti-hash function. 
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And for any sjtjt +≤≤, , )2()1( →⋅+−≥≥⋅− εε pcDDcpD MAX
B
tMAX .  

)3()1( →⋅+−≥ εpcDD MAX
A

i   

)4(→≥⋅− B
tMAX DcpD ε ,  

Add (3) and (4), 

)6(

)5()1(

→⋅−≥−⇒

→⋅+−+≥+⋅−

ε

εε

cDD

pcDDDcpD
B
t

A
i

MAX
B
t

A
iMAX  

)7(→≥⋅− A
iMAX DcpD ε   

)8()1( →⋅+−≥ εpcDD MAX
B
t ,  

Add (7) and (8) 

)10(

)9()1(

→−≥⋅⇒

→⋅+−+≥+⋅−
B
t

A
i

MAX
A

i
B
tMAX

DDc

pcDDDcpD

ε

εε
 

Combine (6) and (10), there is  

εεε ⋅≤−⇒⋅−≥−≥⋅ cDDcDDc B
t

A
i

B
t

A
i . 

 

When c is set to 1, all sjjj bbb ++ ,...,, 1  must lie in the ε-neighborhood of ia . That is 

how the hash table works. By calculating the hash function and anti hash function, 
very few points need to be searched. It can be used in searching for all candidates in 

B. Hence the running time is decreased to )33( 434 mnnnO ++ , and its initialization 

costs only linear time. 
 
 

4.3.2 Simplified Loop 
 

In practice, 3
AP  is found a bit difficult to be selected because there are too many 

restrictions on it. Hence there are few points in the list that can be suitable candidates 

for it. Even 3
AP  has been selected, 3

BP  is even more difficult to be found. The inner 

loop in the previous pseudocode fishes in the air most of time. Hence it is replaced in 

the implementation. 3
AP  is no longer selected one by one. Only 1

AP  and 2
AP  will be 

changed for a fixed 3
AP . In addition, the AHD calculation was moved to the outer loop. 
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Not all the suitable combination of key points will be tested, only the one first found 
will be tested:  
 
Pb3=-1; 
/* Initial Pb3 to enter the loop*/ 
 
while (Available()) 
{ 

while (Pb3<0) 
{ 

while(Pb3<0) 
{ 

Pa1=Select1InA(); 
Pa2=Select2InA(); 
Pa3=Select3InA(); 
 
Pb1=Search1InB(Pa1); 
Pb2=Search2InB(Pa1,Pa2,Pb1); 
Pb3=Search3InB(Pa1,Pa2,Pa3,Pb1,Pb2); 
Ignore((Pa1,1); 

} 
Ignore(Pa2,2); 
Reset(1); 

} 
if (Pb3>=0) 
/* If Pb3>=0, three candidates corresponding to their key points are found. */ 
{ 

newAhd= TestAHD(Pa1,Pa2,Pa3,Pb1,Pb2,Pb3); 
/* Test the AHD of this matching. */ 
if (ahd>newAhd) 
{ 

ahd=newAhd; 
KeepCombination(Pa1,Pa2,Pa3,Pb1,Pb2,Pb3); 
/* If the new AHD is smaller then the previous one, remember the current 
matching. If there is no other matching whose AHD is smaller than that of this, 
the matching is selected to be the final matching. */ 

} 
} 
Ignore(Pa3,3); 
Reset(2); 
Reset(1); 

} 
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The major modification to the simple loop is how to choose 3
AP . In the inner loop, 3

AP  

could be treated as a fixed point for different combinations of other two points, 

provided that the current 3
AP  satisfies all the selection conditions. Actually, 3

AP  will 

be changed almost every time for different combination of 1
AP  and 2

AP . The 

accepted 3
AP  at end of the inner loop is the first one that all the candidates of three 

key points can be found in B. The running time decreases to ))33(( 23 mnmnnnO ++ , 

or ))33(( 23 mnnnnO ++  if a hash table is used to search for 3
BP . 

 
 

4.3.3 Black List 
 
Black List (BL) is a technique that prevents re-searching those specific combinations 
of key points which have no corresponding matching points. Notice in the simple 
loop, some combinations of key points will appear again. If such combinations have 
no corresponding points, it is a waste of time to search for their corresponding points 
in a later time. For example, three points are selected as key points in the first loop,  

wvu iAiAiA aPaPaP === 321 ,, .  

However no corresponding points are found for these points. 
ui

a is first marked and 

replaced by another point 
'ui

a . 3
AP  may also be changed to 

'wi
a  for some reasons. It 

may be on the negative side of 21
AAPPCOG , or it may be too close to the other key 

points. If the corresponding points of this combination have been found, 
'wi

a  will be 

marked and 
'ui

a  will be reset finally. In the next iteration, the combination 

wvu iAiAiA aPaPaP === 321 ,,  appears again. Combinations of points like that do not 

need to be searched again in order to save times. Hence BL is introduced.  
 

BL is a 1-dimentinal array whose size is 3n . Each combination 

wvu iAiAiA aPaPaP === 321 ,,  is recorded by a unique element in this array whose index 

is wvu iii ⋅⋅ . Each element is a Boolean value which is initialized to false. If a 
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combination of key points has no corresponding points, its corresponding element in 
the BL is set to true. When the combination is selected next time, it is ignored if its 

value in BL is true. It could save a lot of time when searching for x
BP .  

 

The only concern of BL is the cost of memory space. The size of BL is 3n . For a 

sequence with hundreds of points, the cost of memory space is not very large, 
especially for the PC nowadays. 
 
The effect of BL is very remarkable. The table 4.1 shows the running time of the 
program using BL or not: 
 

Number of 
Points 

Running Time(s) 
All using Simplified Loop Samples 

A B 
Simplified 
Loop only Black List BL & Hash 

Table 

Total 
Time 
saving 
 

S1 113 119 0.540 0.250 0.221 59.1% 
S2 97 98 0.340 0.230 0.191 43.8% 
T1 175 147 1.503 0.731 0.430 71.4% 
T2 292 336 12.368 4.757 1.973 84.0% 
T3 231 221 4.156 1.853 1.221 70.6% 
T4 194 235 3.796 1.542 1.292 66.0% 
T5 141 138 1.062 0.431 0.181 83.0% 
T6 375 291 17.726 5.447 3.896 78.0% 
T7 175 175 2.263 1.832 1.111 50.9% 

 
Table 4.1 

CPU: Pentium II, 300MHz. 
 

4.3.4 ε-neighborhood Determination 
 
The setting of ε-neighborhood influences the speed too. The greater the ε is, the more 
combinations can find their corresponding points, and the more chances the AHD 
needs to be tested, and hence the slower the speed is. On the other hand, if the ε is set 
to too small, it may be unable to find the matching points, especially for the case 
when there are fewer points in the sets. No-matching is reported if the ε is too small in 
such cases.  
 
It is necessary to use a function to set the ε automatically according to the number of 
the points in the sets. Since the size of the cube that is used to detect feature points is 
15, the error distance maximizes to half of its size. Hence 7 is the maximum error 
distance that can be accepted. The position of the feature points is much more 
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accurate than what is expected. 7 is even large. An experiential function is used to 
determine the ε: 

)6,
200

min(7 nm +
−=ε , 

which specifies ]7,1[∈ε . 

 
Table 4.2 shows the running time of different ε settings: 

Number 
of Points Running Time with different ε(s) AHD Samples 
A B 7.0 2.5 Auto-determining 7.0 2.5 Auto-determining

S1 113 119 0.300 0.181 0.221 1.705 1.789 1.761 
S2 97 98 0.180 0.120 0.191 5.014 9.913 5.014 
T1 175 147 0.521 0.351 0.430 2.363 2.426 2.363 
T2 292 336 6.780 2.424 1.973 3.283 4.144 3.943 
T3 231 221 2.130 1.191 1.221 2.671 2.522 2.671 
T4 194 235 2.504 0.981 1.292 3.642 4.715 3.959 
T5 141 138 0.701 0.281 0.181 7.283 9.169 9.169 
T6 375 291 9.214 4.987 3.896 2.598 2.834 3.139 
T7 175 175 1.592 1.292 1.111 2.502 2.468 2.468 

 
Table 4.2 

CPU: Pentium II, 300MHz. Simplified loop, BL and Hash Table is used. 
It is very clear that smaller ε can really increase the speed, because fewer candidates 
for each combination of key points are selected and tested by AHD algorithm. On the 
other hand, lager ε sometimes cannot achieve a better matching. A very important 
point should be noted that three key points matched by their corresponding points 
very well does not mean other points can be matched by their corresponding points. 
Although there are more candidates selected when ε is set larger, simplified loop only 

selects the first available pair of points as 3
AP  and 3

BP . This pair may not as good as 

the later ones. Anyway, the auto-determining function works very well. The speed is 
much faster than ε=7. The AHDs are smaller than the other two in most cases. 
 
 

 

4.3.5 Other Speed-up Techniques 
 
One of the speed-up techniques that sacrifices accuracy has been mentioned once in 
4.2.5. With a carefully set ε, AHD does not need to be tested for each available 
combination of key points and their corresponding points because each corresponding 
point must lie in the ε-neighborhood of a key point. Theoretically speaking, such three 
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pairs of points are already matched. Since AHD testing is no longer needed, running 
time is saved. Considering the worst situation, the corresponding points are found 
after all possible combinations have been tested. The running time is only 

))(( 3mnO + . If other speed-up techniques have been used, like hash table, the 

running time is decreased to )( 3nO . Table 4.3 shows how fast this method is.  

 
This speed-up technique sacrifices the accuracy. It only makes an available matching 
but not an optimal matching, even a better matching. The result could be a disaster for 
some cases, such as T2 and T4, especially with a larger ε. Nonetheless under a well 
controlled ε, this method performs well and the speed is extremely fast. However, this 
method sometime cannot match two sets if isomorphic combinations exist in one of 
the sets. 
 

Number 
of Points 

Running Time with 
different ε(s) AHD 

No AHD Testing Samples 

A B No AHD 
Testing 

Simplified 

Loop/BL/Hash 

Table/Auto-ma

tically ε 

determination 
ε=7.0 

Automatically 

ε determination 

Simplified 

Loop/BL/Hash 

Table/Automatically 

ε determination 

S1 113 119 0.000 0.221 2.578 2.578 1.761 
S2 97 98 0.000 0.191 6.813 6.813 5.014 
T1 175 147 0.000 0.430 8.697 8.697 2.363 
T2 292 336 0.100 1.973 12.610 3.945 3.943 
T3 231 221 0.000 1.221 6.047 2.697 2.671 
T4 194 235 0.000 1.292 18.195 3.674 3.959 
T5 141 138 0.000 0.181 9.172 9.172 9.169 
T6 375 291 0.100 3.896 2.928 3.154 3.139 
T7 175 175 0.000 1.111 2.507 2.507 2.468 

 
Table 4.3 

CPU: Pentium II, 300MHz.  
The running time of No AHD Testing algorithm is the same no mater how much ε is. 

 
There is another method suitable for some special cases. It works well under the 
assumption that the center of the feature points is quite different with COG. The 
feature points are usually detected on one side of the bone in such cases. The 
definition of “the center of the feature points” (COF) is as follows, 

m

b
COF

n

a
COF

m

i
i

B

n

i
i

A

∑∑
== == 00 , . 
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COF actually is the average of all coordinates in x,y,z axis respectively of all feature 
points in on set. The description of this method is as follows, 

1. Calculate COF in each set. 

2. Find a transformation to overlap COGCOFB −  to COGCOFA − . It is very 

easy to find a transformation to overlap two vectors in 3D space.  
3. Transform all the points in B by this transformation matrix. Now there is 

only one degree of freedom left to match two sets, which is the rotation 

around the vector COGCOFA − .  

4. Project all points in both sets onto a uniform sphere centered by COG and 
represent them in polar coordinates with latitude and longitude only. The axis 

of the uniform sphere is COGCOFA − . Now the problem finding a matching 

allowing rotation in 3D space is transformed to the problem finding a 
matching allowing translation in 2D space. 

5. Find an optimal matching by using some algorithms working under 
translations, like the algorithm introduced in [35].  

 
This method is very fast and the result is optimal too. If the algorithm introduced in 
[35] is used to find the matching in the last step, the running time 

is )log)(( nmmnnmO + .  

 
The shortcoming of this method is that it cannot handle the situation when the feature 
points are distributes in the space uniformly. In this case the COG and COF are very 
close, and this causes a great error when overlapping the two vectors. 
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Chapter 5 

 

Alignment and Comparison 
 

 

Since the transformation matrix M has been obtained, the total volume now is 

transformed by this matrix: 

( ) VMzyxV == 1''''  

 

Since the matrix has floating-point elements, the new coordinates are not integer 

either, which is not suitable in discrete space. So, 

⎣ ⎦ ⎣ ⎦ ⎣ ⎦( )15.0'5.0'5.0''' +++= zyxV  

 

After alignment, comparing two volumes becomes very easy: 

),,(''),,(),,( zyxVzyxVzyxV OC −=  

where ),,( zyxVO  is the value of the voxel whose coordinates are (x,y,z) in the 

sample volume. 
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Chapter 6 

 

Conclusion 
 
In this thesis, series of methods are introduced to align two volumes of samples, 
which contain the same bone but one of them has been scanned after bone cement 
injection. The shape of the bone cement extracted from the data, and surgeons can 
then easily observe, evaluate the bone cement injected into the bone. It is no longer 
necessary to cut off the bone to measure the result of the injection, which can totally 
destroy the sample. Students of Orthopaedic Surgery who have less experience can be 
trained to distinguish the part belonging to bone cement from the other tissue by 
studying the extracted part of bone cement. Researchers in computer graphic also can 
test their new classification method by comparing with the direct results. 
 
The research is based on the VISBONE system, which have solved the volume 
visualization problem. However the old version of VISBONE runs on a high-end SGI 
workstation and programming and maintenance is difficult. Hence at the very 
beginning of this research, a new version of VISBONE that can run on the PC 
platform with the help of the VolumePro chipset has been developed. The new 
version performs better than the old version and it can easily be expanded. The new 
version also has collected all the useful features of the original VISBONE, especially 
the Transfer Function Editing and Cut Plane. These features help us observe the 
internal structure of the bone, analyze the density of the bone cement, which is very 
helpful for the future researches. 
 
However, some automatic methods for extracting the bone cement without 
comparison were planned to be developed at first. After several months’ endeavor, the 
results were not as satisfactory as we expected. Two main problems could not be 
solved no matter which methods were used. One was that the boundary between the 
bone cement and the harder part of the bone can not be detected because they adhere 
together and the densities are similar. The other was that the extracted part could not 
be proved that it is exactly the part belonging to the bone cement, though it looks like 
the bone cement visually. These two problems were the motivation to develop an 
approach to compare two real samples automatically.  
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Detecting feature points in the mass of voxels was the first task. Traditional feature 
point detectors had been found not to be suitable for volume data sets, especially the 
volume containing human organs. Traditional feature point detectors usually use 
small filters that could not deal with large structures. On the other hand, they are 
unable to produce stable result when the volume is rotated. Although large size filters 
have been developed, plenty of decimal calculations are needed. Our feature point 
detection method is based on statistics instead of fixed filters. Feature points at sharp 
corner of the bone cortices are detected by analyzing the statistic data of the voxels’ 
allocations in a cube with a specified size. This method could avoid the influence of 
changing connection relationship among the voxels when the volume is rotated in 
discrete space. It is also faster than the traditional filters because it has only integer 
addition and multiplication only. This method could be used widely for its flexibility. 
The size of the testing cube, the sharpness of the corner, the threshold of density all 
could be set to fit special tasks. In practice, this method works very well. Most of the 
expected points could be detected in both samples. The accuracy of feature point 
detection eases the difficulty in later works.  
 
The step of matching two sets of feature points may be the most difficult part in the 
thesis. Literature review has been done before the work began. Not many papers were 
found that present methods suitable for the special case we met. A matching method 
that balances the speed and accuracy as well as possible was expected to be 
developed, but not a method which can achieve the optimal results for the best 
matching is considered to be useless sometimes in the discrete space. Based on the 
fundamental geometry theory, our method implemented the matching by seeking 
three key points and their corresponding points, which all of them lied in some fixed 
error region of the key points. This is done after the translation between the two sets 
has been solved by a transigent method, in which the Center of Geometry of the bone 
is introduced. An easy and direct way to calculate the transformation matrix is also 
used not only for transforming the points in the set but also measuring how good the 
matching was. The transformation matrix got by this way might lead to distortions, 
which is the exact effect we wanted. Worse matching with greater distortion, which 
could easily be tested, would soon be eliminated. Better matching with less distortion 
is acceptable for the distortion will amke no effects visually at least. Traditional 
measurement, called Hausdorff Distance, for measuring how good the matching was 
in point pattern matching has also been modified to suit our special case. 
 
Other speed-up techniques as well as skillful selection for key points are implemented 
in the program. Skillful selection for key points makes it unnecessary to seek 
corresponding points for all the combinations of key points. Thus, the running time is 
reduced. Others, like the hash table, improve the speed efficiently.  
 
Although most of the approaches introduced in this thesis have been implemented, 
source codes for each step have not been combined together. A complete system is 
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expected to be done first in the future works. We hope to develop several methods to 
analyze the structure of the bone cement automatically after it has been extracted. The 
development of a method for extracting the bone cement automatically in the volume 
data is still under way.  
 



 

 

Contents 

 
1 Introduction 1

 

2 Background 4

2.1 From the Surfaces to Volumes4 4

2.2 Volume Visualization 5

2.2.1 Voxels 5

2.2.2 Rendering 5

2.2.3 VolumePro 6

2.3 Medical Data 9

2.3.1 X-ray and Computed Tomography 9

2.3.2 DICOM 10

2.4 Bone Cement 12

2.5 Previous Work on Tissue Classification 13

 

3 Feature Points Detection in Volume Data 18

3.1 Discrete Data Space 18

3.1.1 Connection in Discrete Data Space 19

3.1.2 Rotation Problems in Discrete Space 20

3.2 Interpolation Along z-axis 21

3.3 Detecting Feature Points in Discrete Data Space 22

3.3.1 Previous Work on Feature Point Detection 22

3.3.2 Detecting Feature Points by Statistical Method 27



3.3.3 Eliminate Unsuitable Feature Points 32

3.4 Conclusion of Feature Point Detection 36

 

4 Approximate Point Pattern Matching 37

4.1 Previous Works 39

4.2 Approximate Point Pattern Matching 44

4.2.1 Hausdorff Distance 45

4.2.2 Transformation Matrix 47

4.2.3 Geometric Center of Volume 50

4.2.4 Seeking Corresponding Points 52

4.2.5 Partially Optimal Result 59

4.3 Speed-up Technique 64

4.3.1 Increasing Speed for Searching 3
BP  64

4.3.2 Simplified Loop 67

4.3.3 Black List 69

4.3.4 ε-neighborhood Determination 70

4.3.5 Other Speed-up Techniques 71

 

5 Alignment and Comparison 74

 

6 Conclusion 75

 

Bibliography 78

 

 



BIBLIOGRAPHY 78

 
 

Bibliography 
 
 
[1] W. E. Lorensen and H. E. Cline. Marching Cubes: A High Resolution 3D Surface 
Construction Algorithm. 
[2] Dirk Bartz and Michael Meiβner. Voxels versus Polygons: A Comparative 
Approach for Volume Graphics. Volume Graphics: Springer Book, pp171-183 
[3] Tuy H, Tuy L. Direct 2D display of 3D objects. IEEE Computer Graphics and 
Applications, 1984; 4(10): 29-33. 
[4] Levoy M. Display of surfaces from volume data. IEEE Computer Graphics and 
Applications, 1988; 8(3): 29-37. 
[5] Frieder G, Gordon D, Reynolds R. Back-to-front display of voxel-based objects. 
IEEE Computer Graphics and Applications, 1985; 5(1): 52-59. 
[6] Wilhelms J, van Geldern A. A coherent projection approach for direct volume 
rendering. In: Proc. ACM SIGGRAPH Conference, 1991; 275-284. 
[7] Westover Lee. Footprint evaluation for volume rendering. Proceeding of 
SIGRAPH ’90. Computer Graphics, 24(4): 367-376, August 1990. 
[8] Robert A. Drebin, Loren Carpenter, and Pat Hanranhan. Volume rendering. 
Computer Graphics, 22(4): 65-74, July 1988. ACM SIGRAPH ’88 Conference 
Proceedings. 
[9] P Lacroute and M. Levoy. Fast volume rendering using a shear-warp factorization 
of the view transform. Computer Graphics, Proceedings of SIGRAPH 94, pages 
451-457, July 1994. 
[10] Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh Lauer, Larry Seiler. The 
VolumePro Real-Time Ray-Casting System. 
[11] P. Lacroute. Analysis of a parallel volume rendering system based on the 
shear-warp factorization. IEEE Transactions on Visualization and Computer 
Graphics, 2(3): 218-231, September 1996. 
[12] Yi-King Choi, Leong J.C.Y., Lu, W.W., Wenping Wang. VISBONE: 3D 
visualization of bone mineral density. Computer Graphics and Applications, 1999. 
Proceedings. Seventh Pacific Conference on, 1999 Page(s): 138 -146, 321. 
[13] H. Pfister and A Kaufman. Cube-4 – A scalable architecture for real-time volume 
rendering. In 1996 ACM/IEEE Symposium on Volume Visualization, pages 47-54, San 
Francisco, CA, October 1996. 
[14] R. Osborne, H. Pfister, H. Lauer, N. McKenzie, S. Gibson, W. Hiatt, and T. 
Ohkami. EM-Cube: An architecture for low-cost real-time volume rendering. In 
Proceeding of the SIGRAPH/Eurographics Workshop on Graphics Hardware, pages 
131-138, Los Angeles, CA, August 1997. 



BIBLIOGRAPHY 79

[15] R. Yagel and A. Kaufman. Template-based volume viewing. Computer Graphics 
Forum, Proceeding Eurographics, 11(3): 153-167, September 1992. 
[16] P. Schröder and G. Stoll. Data parallel volume rendering as line drawing. In 1992 
Workshop on Volume Visualization, pages 25-31, Boston, MA, October 1992. 
[17] T. Laine, D. Schlenzka, K. Mäkitalo, K. Tallroth, L. Nolte, and H. Visarius. 
Improved Accuracy of Pedicle Screw Insertion With Computer-Assisted Surgery. 
SPINE, Volume 22, Number 11, 1997, pp. 1254-1258. 
[18] Olga Sourina, Alexei Sourin, and Howe Tet Sen. Virtual Orthopedic Surgery 
Training on Personal Computer. International Journal of Information Technology, 
Volume 6, No. 1, May 2000. 
[19] http://www.osteonics.com/simplex_us/pages/intro.html 
[20] 
http://www.irc-biomed-materials.qmul.ac.uk/Pages/Research/Bonecement/Research-
Bonecement.htm 
[21] W.W. Lu, JCY Leong, YW Li, KCM Cheung, KDK Luk, KY Chiu, A Holmes, SP 
Chow. Injectable Bioactive Bone Cement for Spinal Surgery: A Developmental and An 
in vitro Biomechanical and Morphological Study.  
[22] G.D.Rubin, C.F.Beullieu, V.Anngiro, et al.: "Perspective Volume Rendering of 
CT and MR Images: Applications for Endoscopic Imaging", Radiology, Vol.199, 
pp.321-330 (1996). 
[23]M. W. Vannier, R. L. Butterfield, D. Jordon, W. A. Murphy, R. G. Levitt, and M. 
Gado. Multispectral Analysis of Magnetic Resonance Images. Radiology, vol. 154, 
no. 1, pp. 221-224, 1985. 
[24] M. C. Clark, L. O. Hall, D. B. Goldgof, L. P. Clark, R. P. Velthuizen, and M. S. 
Silbiger. MRI Segmentation Using Fuzzy Clustering Techniques. IEEE Eng. In 
Medicine and Biology, vol. 13, pp. 730-742, 1994. 
[25] Yoshinobu Sato, Carl-Fredrik Westin, Abhir Bhalerao, Shin Nakajima, Nobuyuki 
Shiraga, Shinichi Tamura and Ron Kikinis. Tissue Classification Based on 3D Local 
Intensity Structure for Volume Rendering. IEEE TRANSACTIONS ON 
VISUALIZATION AND COMPUTER GRAPHICS, Vol. 6, No. 2, April-June 2000. 
[26] Y. Sato, S. Nakajima, H. Atsumi, T. Koller, G. Gerig, S. Yoshida, and R. 
Kikinis. 3D Multiscale Line Filter for Segmentation and Visualization of Curvilinear 
Structures in Medical Images. Proc. Joint Conf. Computer Vision, Virtual Reality, and 
Robotics in Medicine and Medical Robotics and Computer-Assisted Surgery ’97, pp. 
213-222, 1997. 
[27] Daniel Cohen, and Arie Kaufman. Scan-Conversion Algorithms for Linear and 
Quadratic Objects. Volume Visualization, Arie Kaufman. IEEE Computer Society 
Press Tutorial. 
[28] David G. Morgenthaler, and Azriel Rosenfeld. Surface in Three-Dimensional 
Digital  Images. Volume Visualization, Arie Kaufman. IEEE Computer Society Press 
Tutorial. 
[29] Hui Chen, Wenping Wang, and Ralph Martin. Building Panoramas from 
Photographs Taken with An Uncalibrated Hand-Held Camera.  



BIBLIOGRAPHY 80

[30] Steven W. Zucker, and Robert A. Hummel. A Three- Dimensional Edge 
Operator. Volume Visualization, Arie Kaufman. IEEE Computer Society Press 
Tutorial. 
[31] C. John. A Computational Approach to Edge Detection. IEEE Trans. Pattern 
Analysis and Machine Intelligence, vol. 8(6), pp. 679-698, Nov. 1986. 
[32] Helmut Alt, and Leonidas J. Guibas. Discrete Geometric Shapes: Matching, 
Interpolation, and Approximation. Handbook of Computational Geometry, Edited by 
J.-R. Sack, and J. Urrutia. 
[33] M.D. Atkinson. An Optimal Algorithm for Geometrical Congruence. J. 
Algorithms 8 (1987), 159-172. 
[34] H. Alt, K. Melhlhom, H. Wagener and E. Welzl, Congruence. Similarity and 
Symmetries of Geometric Objects. Discrete Compu. Geom. 3(1988), 237-256. 
[35] E. M. Arkin, K. Kedem, J. S. B. Mitchell, J. Sprinzak and M. Werman. Matching 
points into pairwise-disjoint noise regions: Combinatorial bounds and algorithms. 
ORSA J. Comput. 4(4) (1992), 375-386. 
[36] A. Efrat, and A. Itai. Improvements on Bottleneck Matching and Related 
Problems Using Geometry. Proc. 12th Annu. ACM Sympos. Comput. Geom. 
(1996),301-310. 
[37] P. J. Heffernan and S. Schirra. Approximate Decision Algorithms for Points Set 
Congruence. Comput. Geom. 4(1994), 137-156. 
[38] B. Behrends. Algorithms zur Erkennung der ε-Kongruenz von Punktmengen und 
Polygonen. M.S. thesis, Freie Univ. Berlin, Institute for Computer Science (1990). 
[39] D. P. Huttenlocher, K. Kedem, and M. Sharir. The upper envelope of Voronoi 
surfaces and its applications. Discrete Comput. Geom. 9(1993), 267-291. 
[40] D. P. Huttenlocher, K. Kedem, and J. M. Kleinberg. On Dynamic Voronoi 
Diagrams and the Minimum Hausdorff Distance for Point Sets Under Euclidean 
Motion in the Plane. Proc. 8th Annu. ACM Sympos. Comput. Geom. (1992), 110-120. 
 


	Kai Xie - cover.pdf
	Xie Kai - abs.pdf
	Xie Kai - body.pdf
	Xie Kai - contents.pdf
	Xie Kai - bib.pdf



